
DOCTORAL THESIS

SORBONNE UNIVERSITÉ

Speciality: COMPUTER SCIENCE

Presented by

JULES VIDAL

to obtain the degree of

Ph.D. of Sorbonne Université

Progressivity in Topological Data Analysis

To be defended on December 8th, 2021, before the committee:

Michaël Aupetit Senior Scientist Qatar Computing Research Institute Reviewer

Frédéric Chazal Senior Scientist INRIA Reviewer

Isabelle Bloch Professor Sorbonne Université Examiner

David Coeurjolly Senior Scientist CNRS Examiner

Jean-Daniel Fekete Senior Scientist INRIA Examiner

Gabriel Peyré Senior Scientist CNRS Examiner

Vanessa Robins Senior Scientist Australian National University Examiner

Julien Tierny Senior Scientist CNRS Advisor

Sorbonne Université

LIP6 – Laboratoire d’Informatique de Paris 6

UMR 7606 Sorbonne Université – CNRS

4 Place Jussieu – 75005 Paris

Acknowledgments

Remerciements

I would like to warmly thank Michaël Aupetit and Frédéric Chazal for

accepting to take the time to read and review this thesis. I greatly appreci-

ated your feedback. Thank you also to the other examiners, Isabelle Bloch,

David Coeurjolly, Jean-Daniel Fekete, Gabriel Peyré and Vanessa Robins.

I am honored that you accepted to be part of my defense committee and

to become acquainted with my work.

Un grand merci à toi Julien, d’avoir été pour moi un professeur et un

encadrant de thèse exceptionnels. Merci pour tes conseils, pour tout ce que

tu m’as appris, et surtout pour ta bienveillance constante. Ta motivation et

ta bonne humeur sont contagieuses, et j’aurais eu du mal à arriver jusqu’ici

sans l’une et l’autre.

Merci aux (ex-)membres de l’équipe APR et du LIP6 pour ces chou-

ettes années passées ensemble. Merci en particulier Guillaume F., Charles,

Maxime, Matthieu J., Marwan, David, Alice, Steven, Clément, Matthieu D.,

Boubacar, pour votre exceptionnelle gentillesse, l’accueil chaleureux que

vous m’avez offert, et tous vos conseils. Merci Ghiles, Vincent et Frédéric

pour m’avoir accueilli dans votre gang à roulettes. Merci Martin, Raphaël

et Yi-Ting, c’était un vrai plaisir de traverser cette expérience à vos côtés

de bout en bout. Mention spéciale à Pierre, un grand merci pour toute

l’aide que tu m’as apportée, m’avoir appris à utiliser git (ou au moins

essayé) et les nombreuses séries auxquelles tu m’as initié. Un grand merci

aussi Mat(t)ieu, Hugo, Keanu, Francesco, Ada, Guillaume B., et Eve, pour

les moments toujours agréables passés ensemble. Vous formez une belle

équipe !

A big thanks to the members of the VESTEC project, who were all

really welcoming and really kind. It has been a great and maturing expe-

rience working with you.

Merci à Mélanie, Fabien, Jonathan, et aux autres membres de la com-

munauté visu que j’ai rencontrés en conférence, et toujours recroisés avec

un grand plaisir.

iii

À tous mes ami·e·s qui ont été présent·e·s à mes côtés, m’ont encour-

agé et soutenu, m’ont souvent écouté et ont parfois enduré les moments

difficiles avec moi, un immense merci. J’ai de la chance de vous avoir au-

tour de moi, et la chance que vous soyiez assez nombreux et nombreuses

pour que j’hésite franchement à vous nommer toustes. Mais puisque je

vous dois bien ça: merci Iris, Romain, Mathieu, Matthieu, Juliette, Olivier,

Jérémy, Cyrielle, Raphaël, Antoine, Alex, Arno, Roulia, Laura, Pierre E.,

Sofia, Franz, Ilham, Gwendal, Claire, Pierre B., Agathe, Estelle, Magali,

Thomas, Glen, Fanny, Timothée, Mark, et Rémy. Sans ordre particulier.

Un grand merci aussi à toi, Naomi, d’être là avec moi.

Enfin, merci à ma mère Catherine, mon père Frédéric, ma sœur Rose,

ma sœur Eva, mon frère Sam, Marie, mes grand-parents, et le reste de

ma famille, qui ont partagé mes réussites et mes tracas, et qui se sont ef-

forcé·e·s de comprendre et d’apprécier mon travail. Votre soutien a beau-

coup compté.

iv

Publications

First-author publications

Journal Papers

A Progressive Approach to Scalar Field Topology

Jules Vidal, Pierre Guillou, Julien Tierny

IEEE Transactions on Visualization and Computer Graphics, 2021

To be presented at IEEE VIS 2021

Progressive Wasserstein Barycenters of Persistence Diagrams

Jules Vidal, Joseph Budin, Julien Tierny

IEEE Transactions on Visualization and Computer Graphics

Proc. of IEEE VIS 2019

Best Paper Honorable Mention Award

Conference Papers

Fast Approximations of Persistence Diagrams with Guarantees

Jules Vidal and Julien Tierny

Proc. of IEEE Symposium on Large Data Analysis and Visualization

(LDAV) 2021

Other Publications

Journal Papers

Wasserstein Distances, Geodesics and Barycenters of Merge Trees

Mathieu Pont, Jules Vidal, Julie Delon, Julien Tierny

IEEE Transactions on Visualization and Computer Graphics

Proc. of IEEE VIS 2021

v

Conference Papers

Statistical Parameter Selection for Clustering Persistence Diagrams

Max Kontak, Jules Vidal, Julien Tierny

Proc. of Super Computing workshop on Urgent HPC 2019

An Overview of the Topology Toolkit

Talha Bin Masood, Joseph Budin, Martin Falk, Guillaume Favelier,

Christoph Garth, Charles Gueunet, Pierre Guillou, Lutz Hofmann, Petar

Hristov, Adhitya Kamakshidasan, Christopher Kappe, Pavol Klacansky,

Patrick Laurin, Joshua A. Levine, Jonas Lukasczyk, Daisuke Sakurai,

Maxime Soler, Peter Steneteg, Julien Tierny, Will Usher, Jules Vidal and

Michal Wozniak

Proc. of TopoInVis 2019

Tutorials

Topological Analysis of Ensemble Scalar Data with TTK

Christoph Garth, Charles Gueunet, Pierre Guillou, Lutz Hofmann, Joshua

A Levine, Jonas Lukasczyk, Julien Tierny, Jules Vidal, Bei Wang, Florian

Wetzels

IEEE VIS Tutorials 2021

Topological Data Analysis Made Easy with the Topology ToolKit, What is New?

Martin Falk, Christoph Garth, Charles Gueunet, Pierre Guillou, Attila

Gyulassy, Lutz Hofmann, Christopher Kappe, Joshua A Levine, Jonas

Lukasczyk, Julien Tierny, Jules Vidal

IEEE VIS Tutorials 2020

Topological Data Analysis Made Easy with the Topology ToolKit, A Sequel

Martin Falk, Christoph Garth, Charles Gueunet, Joshua A Levine, Jonas

Lukasczyk, Julien Tierny, Jules Vidal

IEEE VIS Tutorials 2019

vi

Contents

Acknowledgments – Remerciements iii

Publications v

Contents vii

Notations xi

1 Introduction 1

1.1 General Context . 2

1.1.1 Data Analysis and Visualization 2

1.1.2 The Topology ToolKit (TTK) 3

1.1.3 The VESTEC Project . 4

1.2 Motivations . 4

1.2.1 Topological data representation 5

1.2.2 Progressive computation 5

1.3 Problem Formulation . 7

1.3.1 Data Reduction . 7

1.3.2 Analysis of Reduced representations 7

1.3.3 Degraded/progressive computation 8

1.4 Contributions . 8

1.5 Outline . 10

2 Theoretical Background 11

2.1 Input data representation 13

2.1.1 Domain representation 13

2.1.2 Topological invariants 16

2.1.3 Scalar field representation 18

2.2 Critical Points . 21

2.3 Persistence Diagrams . 23

2.3.1 The case of the 0-th Betti number 23

2.3.2 Notions of persistent homology 24

2.3.3 Topological persistence 26

vii

2.4 Metrics on the space of Persistence Diagrams 27

2.4.1 Wasserstein distance between diagrams 28

2.4.2 Bottleneck distance between diagrams 30

2.5 Other topological abstractions 30

3 A Progressive Approach to Scalar Field Topology 33

Our contribution in one image 35

3.1 Context . 36

3.1.1 Related Work . 36

3.1.2 Contributions . 37

3.2 Progressive Data Representation 38

3.2.1 Edge-Nested Triangulation Hierarchy 38

3.2.2 Edge-Nested Triangulations of Regular Grids 40

3.2.3 Topologically Invariant Vertices 42

3.3 Progressive Critical Points 46

3.3.1 Initialization and Updates 47

3.3.2 Computation Shortcuts 49

3.3.3 Parallelism . 49

3.3.4 Extremum Lifetime . 49

3.4 Progressive Persistence Diagrams 50

3.4.1 Persistence Diagram from Critical Points 52

3.4.2 Progressive Strategy . 54

3.4.3 Parallelism . 54

3.5 Results . 55

3.5.1 Progressive Data Representation 55

3.5.2 Time Performance . 58

3.5.3 Stress Cases . 61

3.5.4 Progressive Topological Visualization and Analysis 62

3.6 Limitations and Discussion 65

3.7 Summary . 66

4 Approximation of Persistence Diagrams with Guaran-
tees 69

Our contribution in one image 71

4.1 Overview . 72

4.2 Topology Approximation . 72

4.2.1 Hierarchy Processing . 73

4.2.2 Vertex Folding . 74

4.2.3 Bottleneck Error Control 76

viii

4.2.4 Monotony offsets . 77

4.2.5 Parallelism . 79

4.2.6 Uncertainty . 79

4.3 Results . 80

4.3.1 Time Performance . 80

4.3.2 Approximation Accuracy 83

4.3.3 Qualitative Analysis . 85

4.4 Limitations and Discussion 87

4.5 Summary . 88

5 Progressive Wasserstein Barycenters of Persistence

Diagrams 89

Our contribution in one image 93

5.1 Context . 94

5.1.1 Related Work . 94

5.1.2 Contributions . 97

5.2 Background . 98

5.2.1 Efficient Wasserstein distance computation by Auction . . 98

5.2.2 Wasserstein barycenters of Persistence diagrams 100

5.3 Overview . 101

5.4 Progressive Barycenters . 101

5.4.1 Auctions with Price Memorization 101

5.4.2 Accuracy-driven progressivity 102

5.4.3 Persistence-driven progressivity 103

5.4.4 Parallelism . 104

5.4.5 Computation time constraints 104

5.5 Application to Ensemble Topological Clustering 107

5.6 Results . 108

5.6.1 Time performance . 109

5.6.2 Barycenter quality . 111

5.6.3 Ensemble visual analysis with Topological Clustering . . 114

5.7 Limitations . 116

5.8 Overall time-constrained pipeline 118

5.9 Summary . 119

6 An application use case 121

6.1 The VESTEC project . 123

6.1.1 Purpose . 123

6.1.2 Numerical simulations for urgent decision-making 124

ix

6.1.3 Use cases . 125

6.1.4 Challenges . 128

6.2 Topological Data Analysis in VESTEC 129

6.2.1 Persistence diagrams for Data Reduction 129

6.2.2 In-Situ Computation . 130

6.2.3 Statistical Analysis . 131

6.3 Results: The Space Weather Use Case 131

6.3.1 In-Situ Computation of Persistence Diagrams 131

6.3.2 Wasserstein distances between diagrams 132

6.3.3 Topological Clustering 133

6.4 Conclusion . 135

7 Conclusion 137

7.1 Summary of contributions 137

7.2 Discussion . 139

7.3 Perspectives . 141

7.4 Final Word . 142

A Appendix: Data List 143

Bibliography 147

x

Notations

M Manifold

G Regular grid

M Piecewise linear manifold

R Set of real numbers

Rn Euclidean space of dimension n

σ Simplex

Mi Set of i-simplices ofM
τ Face of a simplex

v Vertex

St(σ), Lk(σ) Star and link of a simplex σ

Lk−(σ), Lk+(σ) Lower link and upper link of a simplex σ

f :M→ R Piecewise linear scalar field

w Isovalue

f−1(w) Level set

f−1
−∞(w) Sub-level set

D(f) Persistence diagram of f

W2 L2-Wasserstein distance

W∞ Bottleneck distance

D∗ Wasserstein barycenter of a set of persistence diagrams

H Edge-nested triangulation hierarchy

Mi i-th level of H
o An old vertex inMi

n A new vertex inMi

Lk(v)i, Lk+(v)i, Lk−(v)i Link, upper link and lower link of v inMi

v̂ Folded vertex

f̂ Approximation of f by vertex folding

f Staircase approximation of f

M Monotony offsets

O Offsets

xi

1Introduction

Data is an intangible concept that has taken an increasing place in

our everyday life. A general idea is that data usually contains in-

formation, in a raw state. In contrast to information, however, data needs

to be scrutinized, analyzed, and interpreted in order to be given mean-

ing. Etymologically, the word data comes from Latin data, plural of datum,

« that is given ». It represents a premise, a given or granted fact upon

which a reasoning or a calculation can be built. This thesis deals with

data analysis and visualization, in particular for the interpretation of sci-

entific data, i.e. relating to the fields of natural sciences and engineering.

We seek ways to extract and visualize information from the raw data, so as

to ease its interpretation and offer more understanding of a phenomenon.

In particular, our work focuses on topological methods for data analysis

and visualization. This recent field of research relies on the idea that data

has a structure, an intrinsic shape that characterizes the phenomenon that

it describes. Extracting this shape is of great interest to understand what is

happening behind the data. A great analogy1 can be made with maps. A

raw photography of a aerial view of a city is a good description of the real

world. However its use is limited to localize and guide oneself. In con-

trast, a map encoding the main structures of the data (main roads, main

buildings) would be of greater help. Once this new representation is cre-

ated, it can further be used to compute even more interesting information,

such as optimal itineraries and travel times. Topological Data Analysis en-

ables the same thing with more general data, it helps to encode the main

features into simpler, practical reduced representations.

1I first heard this analogy from Attila Gyulassi, at the occasion of the first Topology

ToolKit tutorial at IEEE VIS 2018 (my first ever attendance at a Visualization conference).

1

2 Chapter 1. Introduction

1.1 General Context

1.1.1 Data Analysis and Visualization

In modern sciences, data is historically present in the form of measure-

ment results and observations. They are produced with the help of mea-

suring tools: thermometers, telescopes, manometers, and later more ad-

vanced sensors such as an electronic microscope or an MRI scanner, for

instance. Natural sciences moved forward with the development of new

scientific instruments, which continuously produced data. The analysis of

such data has been a key component of the hypothetico-deductive method,

broadly used in natural sciences, which consists in formulating hypothe-

ses, later tested against observable data. Data is also the support for in-

ductive reasoning in sciences, which consists in the formulation of a hy-

pothesis based on the analysis of data. A famous example of a so-called

data-driven scientific discovery was the enunciation by Kepler of his third

law of planetary motion in 1619 [Kep19], from the analysis of astronomi-

cal data gathered since the Antiquity, notably by the astronomers Ptolemy

and Tycho Brahe. The kind of data aforementioned, produced by observa-

tional and measuring instruments, is said to be acquired data.

In contrast, scientific data can also be the result of calculations real-

ized with a model. The field of numerical simulations is concerned with

the solving of these calculations with a computer, in order to simulate

the unfolding of a real phenomenon. Simulations are broadly used in all

scientific domains to analyze the implications of a model. They are also

used in scientific applications to try and predict the reaction of a system

in specific conditions. Some examples of applications include weather

forecasting, molecular dynamics simulations to estimate the efficiency of

a medicinal drug, or crash test simulations in the car industry to avoid

the cost and hassle of performing real ones. In practice, large ensembles of

simulations are run in order to explore the influence of a large variety of

input parameters for a model and quantify the related uncertainties. The

colossal progress made in the last decades in computing power as well as

the development of advanced numerical methods have opened the gate

to an unprecedented production of data through numerical simulations.

Figure 1.1 gives examples of both acquired and simulated scientific data.

Technological progress induces a continuous increase in the size and

complexity of data produced by acquisition and simulation methods, that

has to be interpreted. The analysis of data is a key component of the

1.1. General Context 3

Figure 1.1 – Examples of scientific data. On the left, an acquired data set: a Computer-

ized Tomography scan (CT scan) of a foot, the density of the foot is represented. On the

right, a simulated data set: the result of the numerical simulation of the Isabel hurricane,

that hit the coast of Florida in 2003. The magnitude of the wind velocity is represented.

The data is visualized using a colormap: green and cyan denote higher values of the data,

while beige and brown correspond to lower values.

interpretation process. Scientific visualization, in particular, deals with

the graphical representation of raw scientific data with the aim of gaining

insights about the data and facilitating its interpretation, for instance by

visually highlighting trends that might be overlooked otherwise. Scien-

tific visualization combines data analysis and computer graphics, and is

concerned with the interactivity, performance and interpretability of the

produced visualizations.

1.1.2 The Topology ToolKit (TTK)

The Topology ToolKit (TTK, https://topology-tool-kit.github.io) [TFL+
17,

BMBF+
19] is a software platform designed for the topological analysis of

scalar data for scientific visualization. It is developed in C++ and tightly

integrated in ParaView [AGL05], which makes it easily accessible to end

users, as ParaView is a widely-used, open-source visualization software

that is developed around the Visualization ToolKit (VTK) library. TTK

aims at providing efficient and robust implementations of the standard

tools of Topological Data Analysis (introduced in Section 1.2.1). Its mod-

ularity also facilitates the development of new analysis tools, while lever-

aging the visualization ecosystem provided by VTK and ParaView. As

such it is also a versatile research tool. TTK is an open-source software, it

is mainly developed at Sorbonne Université under the direction of Julien

Tierny, but has over 30 different contributors [TTK20] from over 16 aca-

demic and industrial institutions. TTK is a distributed software and re-

https://topology-tool-kit.github.io

4 Chapter 1. Introduction

cently became an official plugin of ParaView (as of version 5.10), which

increased its accessibility.

All the research work that is presented in this thesis was developed

and implemented in TTK, and officially integrated in the library upon

publication. Therefore it is publicly available, and accessible.

1.1.3 The VESTEC Project

This thesis takes place in the context of a European project called VESTEC

(Visual Exploration and Sampling Toolkit for Extreme Computing). The

purpose of the project is to develop and build a flexible tool chain to

support decision makers in the event of catastrophic situations (such as

wildfires, earthquakes, disease outbreaks, . . .), thanks to interactive su-

percomputing and interactive data analysis and visualization. The project

regrouped partners both in academics and industrial fields, with expertise

in various domains: high-performance computing, data analysis and visu-

alization, numerical simulation and specific application fields. The work

on data analysis and visualization that was realized during this thesis was

integrated into the project, in interaction with its other parts such as high

performance computing environments and immersive visualization appli-

cations. As such, this gave us the opportunity to work in the context of the

development of a complete pipeline of simulation and data analysis and

visualization, to experiment on real data and to exchange with experts in

different related fields.

The extent of the project and the obtained results are described in detail

in Chapter 6 as an application use case of our work.

1.2 Motivations

The growing power of acquisition tools and computer resources induces a

never-ending increase in the size and complexity of the data produced in

engineering and sciences, which constitutes a challenge for their analysis

and interpretation. In order to address these issues, advanced data analy-

sis tools are designed to efficiently capture the main features of interest in

large data sets, in order to support interactive visualization and analysis

tasks.

1.2. Motivations 5

1.2.1 Topological data representation

Topological Data Analysis (TDA) is a collection of techniques born from

the application of the concepts of computational topology to data anal-

ysis. Briefly presented, topology describes geometrical objects based on

properties that are invariant through continuous deformations. Prin-

ciples such as connectedness, number of handles or voids, orientabil-

ity, are used to characterize objects independently of their geometri-

cal shape. As such, the tools developed in Topological Data Analysis

(TDA) enable a generic, robust, and efficient extraction of structural fea-

tures in data [EH09]. Over the last years, many data analysis and vi-

sualization methods have been built around these concepts [HLH+
16],

with applications to a large spectrum of domains, including astrophysics

[Sou11, SPN+
16], biological imaging [CSvdP04, BDSS18, AAPW18], chem-

istry [BGL+
18, GABCG+

14, OGT19], fluid dynamics [KRHH11], ma-

terial sciences [GDN+
07, GKL+

15, SPD+
19], or turbulent combustion

[LBM+
06, BWT+

11, GBG+
14]. In the case of scalar data, TDA algo-

rithms rely on established topological data abstractions, such as con-

tour trees [BR63, DBvK97, TV98, CSA00, SM17, GFJT19], Reeb graphs

[Ree46, BGSF08, PSBM07] or Morse-Smale complexes [DFFIM15, GBHP08,

RWS11, GBP18]. In particular, the Persistence diagram [ELZ02] is a concise

data representation, which visually summarizes the population of features

of interest in a data set, as a function of a measure of importance called

topological persistence. Its conciseness, combined with its stability, made it

increasingly popular in machine learning [CCO17, RHBK15, RSL17] and

in interactive data analysis, where it quickly provides visual hints regard-

ing the number and importance of the features in the data.

Although the core algorithms in TDA have practicable asymptotic

complexities (usually from linear to quadratic time), the construction of

the above topological abstractions can still require significant computation

times for real-life data sets. Thus, when they are integrated into larger in-

teractive systems, TDA algorithms can become a serious time bottleneck.

This is a concern in data exploration scenarios, where users may need to

wait between seconds and minutes to get a feedback when they adjust the

parameters of the topological analysis.

1.2.2 Progressive computation

In his seminal paper on response times of interactive systems, Miller

[Mil68] studied the impact of response time on the ability of users to

6 Chapter 1. Introduction

maintain focus on a given task. For response times below a second (con-

tinuity preserving latency), the system appears fully responsive to user ad-

justments, allowing truly interactive sessions. For response times below a

few seconds (flow preserving latency), users still manage to maintain their

focus but the pauses in the exploration, due to the computation, challenge

user interpretation skills. Above ten seconds (attention preserving latency

threshold), users tend to disengage from the task to pursue other activi-

ties in parallel, which is highly detrimental to the interpretation process.

Unfortunately, for real-life data, existing TDA algorithms correspond to

the latter category of response times.

To address the discontinuities in user experience implied by exces-

sive computation times, the notion of progressive data analysis has been

explored by several authors in information visualization [WM04, FP16,

ZGC+
17, JSF20]. In this context, a progressive algorithm is a technique

capable of providing an interpretable output upon interruption requests,

and of refining it otherwise, progressively converging towards the final

solution. In an interactive setup, progressive algorithms can improve user

experience in two ways. First, users can let such algorithms refine progres-

sively their outputs, while receiving continuously visual feedbacks, and

stop them when the outputs are deemed satisfactory. Second, users can

also define a priori an upper limit on the computation time, after which

the computation is interrupted. This enables to design interactive systems

with guaranteed response time. This is particularly useful for algorithms

whose actual execution times are difficult to anticipate, such as in TDA,

where many popular algorithms, although with known time complexity,

may have an output-sensitive computation time in practice. Progressive

algorithms can also be beneficial to non-interactive setups, such as batch-

mode computations on high performance computers, where the allocation

of computing resources often needs to be finely controlled. In this context,

progressivity enables the assignment of precise computation time budget

to data analysis programs. This is relevant for time-critical applications

such as numerical simulation in support of urgent decision making in cri-

sis management (wildfires, floods, outbreaks, etc), i.e the context of the

VESTEC project. This is also relevant to other applications, towards the

control of the power consumption of high performance computers, which

becomes an increasingly important societal issue.

1.3. Problem Formulation 7

1.3 Problem Formulation

In this thesis, we try and tackle the issue of dealing with the analysis and

visualization of large scalar data. Our goal is to provide generic and effi-

cient methods to describe and analyze data, in order to incorporate them

into larger analysis pipeline such as the one developed in the scope of the

VESTEC project. In this context, we turn to Topological Data Analysis to

first perform data reduction through the generic extraction of topological

features of scalar data and their encoding into efficient reduced data struc-

tures. In a second step, we try and develop statistical tools to provide a

coherent analysis of the reduced data. The third axis of our work resides

in the application of the principles of progressivity to the whole approach.

1.3.1 Data Reduction

The persistence diagram [ELZ02] constitutes our topological abstraction

of choice for the concise representation of important features in the data.

The persistence diagram is formally introduced in Section 2.3. It is one

of the most simple and most studied representations of the repartition of

topological features of a scalar field. The diagram encodes the topologi-

cal persistence of features created and destroyed at the location of critical

points in the data, and displays them as bars in a 2D plot, which makes it a

very light and concise representation. Additionally, it is robust to noise, as

seen in Section 2.3. More specifically, we focus in our work on the saddle-

extrema persistence diagram, as the relevance of the topological features

described by saddle-saddle persistence pairs is usually of moderate in-

terest in our applications. Well-defined metrics (Section 2.4) have been

proposed to describe the space of persistence diagrams, and extensively

studied, which further motivates the choice of this topological abstraction

for our work.

1.3.2 Analysis of Reduced representations

The important size of modern datasets challenges the efficiency of tradi-

tional statistical data analysis techniques, such as a clustering approach

using a simple pointwise L2-metric. Large ensemble of data sets are in-

deed usually too large to fit in memory at once, which motivates the use

of data reduction techniques. Additionally, an analysis performed on ade-

quately reduced data is often more informative, a consequence of the curse

of dimensionality [Bel66]. Once a scalar field is represented by a persistence

8 Chapter 1. Introduction

diagram, further analysis can be run directly on the diagram. Following

the idea of analyzing large quantities of data, we focused on the analysis

of ensembles of scalar fields using their topology. As the data is reduced

through the computation of a persistence diagram for each scalar field, the

problem now resides in the analysis and visualization of an ensemble of

persistence diagrams.

In this context, we investigated ways to efficiently estimate a diagram

that is representative of the set, as such a representative diagram could

visually convey the global trends in the ensemble in terms of features of

interest. To address this issue, a promising idea consists in considering the

barycenter of a set of diagrams, given a distance metric between them, such

as the so-called Wasserstein metric presented in Chapter 2. Once distances

and barycenters can efficiently be computed in the space of persistence

diagrams, it is only a short step to the computation of a clustering of an

ensemble of persistence diagrams. The clustering of ensemble members

based on their topology is an operation of great interest for the purpose

of performing trend analysis in a large ensemble of simulation results.

1.3.3 Degraded/progressive computation

In this work we investigate the two axes listed above, data reduction for

one part and analysis of the reduced representations for the other, in the

light of degraded and progressive computation. As mentioned before,

our goal is to develop techniques that are able to provide an approximate

but exploitable result within reduced computation times. This kind of de-

graded computation favors an interactive exploration of the data, and is

useful to save computing resources such as time or power. When it is pos-

sible, we seek to develop methods that progressively refine approximate

results towards an exact result. This kind of progressive computation en-

ables continuous feedback along the way, and is by nature interruptible

and resumable. It enables the production of approximate results within

a constraint of computation time or precision on the result, that can be

refined upon user requests.

1.4 Contributions

In this thesis, we present the following contributions to the development

of degraded and progressive computation techniques in Topological Data

Analysis:

1.4. Contributions 9

Progressive Topological Data Reduction

We introduce a progressive approach for the topological analysis of scalar

data. Our method relies on a hierarchical representation of the input data

and the new notion of topological invariant vertices. This representation en-

ables the development of new progressive algorithms for the extraction

of critical points and the computation of the saddle-extremum persistence

diagram of a scalar field. Our method computes results in a coarse-to-fine

manner, progressively refining them. Thanks to efficient update mecha-

nisms, our algorithms are overall even faster that non-progressive refer-

ence approaches. Upon interruption, they provide interpretable results

that are similar to the exact, final outputs and which empirically quickly

converge towards them.

Degraded Persistence Diagram Computation

We introduce a novel algorithm for the specific problem of computing

an estimation of the persistence diagram of a scalar field, with guaran-

tees on the error committed. Although not progressive, our method al-

lows the fast and accurate approximation of a diagram, within a user-

controlled Bottleneck distance to the exact result. Our approach provides

a scalar field that corresponds to the approximation of the diagram, and

we demonstrate ways to visualize the uncertainty related to the approxi-

mation directly in the diagrams.

Progressive Analysis of Reduced Data

On the problem of computing a persistence diagram that is representa-

tive of an ensemble of input diagrams, we introduce a novel algorithm for

the progressive computation of Wasserstein barycenters of persistence di-

agrams. We revisit existing algorithms for the efficient computation of

distances between diagrams to extend previous work by Turner et al.

[TMMH14] on the estimation of barycenters. Our progressive approach

produces barycenters that are explicit diagrams and are representative of

the repartition of features in the ensemble. The approach provides an or-

der of magnitude speedup over the fastest combination of existing meth-

ods, and can be interrupted to produce barycenters accounting for the

main features of the data within interactive times. Additionally, we revisit

the k-means algorithm and extend our strategy to introduce an interrupt-

10 Chapter 1. Introduction

ible clustering algorithm for an ensemble of persistence diagrams, with

applications to the visual analysis of global feature trends in the data.

1.5 Outline

The rest of this manuscript is organized as follows:

• In Chapter 2, we present theoretical prerequisites on Topological

Data Analysis and a general review of the state-of-the-art.

• Chapter 3 describes our progressive approach for the topological

analysis of scalar data, with applications to the progressive extrac-

tion of critical points and the progressive persistence diagram com-

putation.

• Chapter 4 presents our method for the fast approximation of persis-

tence diagrams with guarantees on the resulting bottleneck error.

• Chapter 5 describes our approach for the progressive computation

of Wasserstein barycenters of ensembles of persistence diagrams, as

well as its extension to a progressive clustering algorithm of persis-

tence diagrams.

• Chapter 6 details an application use case of our work. We describe in

detail the VESTEC project in which this thesis takes place, and show

how our work was integrated in the project, as well as preliminary

results on a specific application use case from the project.

• Finally, we summarize in Chapter 7 the contributions of this thesis

and elaborate on current limitations and open perspectives.

2Theoretical Background

Contents

2.1 Input data representation . 13

2.1.1 Domain representation . 13

2.1.2 Topological invariants . 16

2.1.3 Scalar field representation 18

2.2 Critical Points . 21

2.3 Persistence Diagrams . 23

2.3.1 The case of the 0-th Betti number 23

2.3.2 Notions of persistent homology 24

2.3.3 Topological persistence . 26

2.4 Metrics on the space of Persistence Diagrams 27

2.4.1 Wasserstein distance between diagrams 28

2.4.2 Bottleneck distance between diagrams 30

2.5 Other topological abstractions 30

This chapter presents theoretical preliminaries on topology and Topo-

logical Data Analysis, which constitutes the basis of our work. We

formalize the representation of the input data that will be used in the re-

mainder of our work, namely the notion of piecewise linear scalar field

defined on piecewise linear manifolds. We also introduce useful topologi-

cal representations of the features of a scalar field, such as its critical points

and its persistence diagram. In order to define these objects, we summa-

rize some concepts from computational topology, notably the notions of

homology and persistent homology.

We tried in this chapter to provide a sound but concise basis to our

work, and to give some intuition about the objects that we will handle

11

12 Chapter 2. Theoretical Background

in this thesis. This chapter contains definitions adapted from [Tie18] and

[EH09]. We refer to the textbook by Edelsbrunner and Harer for a formal

and detailed introduction to computational topology [EH09].

2.1. Input data representation 13

2.1 Input data representation

This section formalizes the notion of data in our framework, that consti-

tutes the input for the data analysis and visualization process. In a word,

we consider a piecewise linear (PL) scalar field f : M → R defined on

a PL d-manifold M, with d equals 2 or 3 in our applications. The pur-

pose of this section is to define these terms and introduce considerations

about the topology of these objects. It contains a substantial amount of

formal definitions, that are needed in our opinion to rigorously present

the objects that we will handle in the remainder of this work.

2.1.1 Domain representation

We introduce hereafter the notion of piecewise linear manifold, that con-

stitutes the domain on which the input scalar data is defined. We start

by presenting the general notion of topological space and homeomorphisms,

which is instrumental to the definition of manifolds.

Definition 2.1 (Topological space, Topology, Open set) A set X is called a topological space if

there exists a collection T of subsets of X such as:

- ∅ and X are in T;

- Any union of elements of T is in T;

- Any finite intersection of elements of T is in T.

T is then said to be a topology on X. The elements of T are called the open

sets of X.

Definition 2.2 (Homeomorphism) A homeomorphism between two topological spaces is a bi-

jective continuous function whose inverse function is continuous. These

spaces are then said to be homeomorphic.

Definition 2.3 (Manifold) A topological space M is a d-manifold (without boundary)

if every point of M has an open neighborhood that is homeomorphic

to an open Euclidean ball of dimension d.

This definition intuitively means that manifolds are shapes in d di-

mensions that can locally be assimilated to a part of an Euclidean space

Rd of the same dimension d, although their global structure might be more

complex. For instance, a sphere locally looks like a 2-dimensional plane.

Manifolds with boundaries can be defined by authorizing boundary

points, i.e. points which have a neighborhood that is homeomorphic to a

14 Chapter 2. Theoretical Background

Figure 2.1 – Simplices in low dimension (d ≤ 3), with their faces. From left to right, a

vertex, an edge, a triangle and a tetrahedron.

Euclidean half-ball. The boundary of a manifold M , noted ∂M , is then

defined as the set of boundary points. For instance, the boundary of the

solid 3-dimensional ball is a sphere, which in return has an empty bound-

ary. In the following, we only consider manifolds in low dimensions, with

d ≤ 3.

Definition 2.4 (Convexity) A set C of an Euclidean space Rn is convex if, for any two

points p0, p1 of C, the point tp0 + (1− t)p1 is also in C, for all t ∈ [0, 1].

The convex hull of a set P of points of an Euclidean space Rn is then the

unique minimal convex set containing all points of P , e.g. the intersection

of all convex sets containing all points of P .

Definition 2.5 (Simplex) A d-simplex is the convex hull of d + 1 affinely independent

points of an Euclidean space Rn, with 0 ≤ d ≤ n. d denotes the di-

mension of the simplex. In our applications, with d ≤ 3, the simplices are

classified in the following (Figure 2.1):

- A 0-simplex is called a vertex.

- A 1-simplex is called an edge.

- A 2-simplex is a triangle.

- A 3-simplex is a tetrahedron.

A d-simplex can be seen as the simplest combinatorial brick of dimension

d that can be used to represent a d-dimensional domain in Rn with d ≤ n.

Definition 2.6 (Face) A face τ of a d-simplex σ is a simplex that is defined by a non-empty,

strict subset of the vertices of σ. The simplex σ is said to be a co-face of τ.

We note τ < σ.

As an example, a tetrahedron has fourteen faces: four triangles, six

edges and four vertices, as seen in Figure 2.1.

Definition 2.7 (Simplicial Complex) A simplicial complex K of dimension d is a finite set of

i-simplices, with i ≤ d such that:

2.1. Input data representation 15

Figure 2.2 – Example of a piecewise linear (PL) 3-manifold M, i.e. a triangulation of

dimension d = 3 (left). A clip view (center) reveals the solid interior ofM, constituted of

tetrahedra. The boundary ∂M ofM (right), is a PL 2-manifold without boundary. The

clip view reveals that it is "hollow", constituted only of triangles.

- for all σ ∈ K, each face of σ is also in K;

- for all σ0, σ1 ∈ K, the intersection σ0∩ σ1 is either empty or a common

face of σ0 and σ1.

Definition 2.8 (Star) Given a simplicial complex K, the star of a simplex σ of K, noted

St(σ), is the set of the co-faces of σ that belong to K:

St(σ) =
{

σ′ ∈ K | σ < σ′
}

Intuitively, the star of a simplex σ is a small combinatorial neighborhood

including σ.

Definition 2.9 (Link) Given a simplicial complex K, the link of a simplex σ of K, noted

Lk(σ), is the set of faces of the simplices of St(σ) that have an empty

intersection with σ:

Lk(σ) =
{

τ ∈ K | τ < σ′, σ′ ∈ St(σ), τ ∩ σ = ∅
}

Intuitively, the link of a simplex σ is the boundary of a small combinatorial

neighborhood including σ.

Definition 2.10 (Triangulation) Let X be a topological space and K a simplicial complex.

If the union of all simplices of K is homeomorphic to X, K is called a

triangulation of X, and noted T .

16 Chapter 2. Theoretical Background

Definition 2.11 (Piecewise Linear Manifold) The triangulation of a manifold M is called

a piecewise linear manifold, notedM.

Therefore, a PL manifold (illustrated in Figure 2.2) is a topologically

accurate representation of a manifold using a triangulation, i.e. an ar-

rangement of combinatorial bricks called simplices. A PL manifold can

be efficiently represented in memory through the list and position of its

vertices, and the list of the high-dimensional simplices (triangles in 2d,

tetrahedra in 3d) defined using these vertices.

In this thesis, a special emphasis is given to PL-manifolds generated

from regular grids. A 2-dimensional regular grid is a regular tessellation

of a rectangle, using identical squares, called the cells. In 3d, we consider a

regular tessellation of a rectangular cuboid using cubes as cells. A regular

grid can be easily triangulated into a valid simplicial complex by consid-

ering the Kuhn triangulation [Kuh60] of the cells, which subdivides each

2-cell into two triangles and each 3-cell into six tetrahedras. This is illus-

trated later on, in Figure 3.3 (page 40). As this triangulation scheme is the

same for each cell, the resulting triangulation can be encoded implicitly,

which makes its representation in memory extremely efficient in practice.

2.1.2 Topological invariants

This section is an introduction to some topological concepts, that are used

to characterize the properties of the domains presented above.

Definition 2.12 (Topological invariant) A topological invariant of a topological space is a

property which is preserved under the application of homeomorphisms

(definition 2.2).

Definition 2.13 (Connectedness) A PL manifoldM is connected if there exists a path between

any pairs of points p0, p1 of M, i.e. a continuous function φ : [0, 1] →M
with φ(0) = p0 and φ(1) = p1.

Definition 2.14 (Connected component) The largest connected subsets of M are called its

connected components. The connected components of a PL manifold are

themselves PL manifolds.

The connectedness of a topological space, and its number of connected

components, are topological invariants. For instance, a PL manifold M,

which is a triangulation of a manifold M , has the same number of con-

nected components than M . Other topological invariants are used to de-

scribe topological spaces that are homeomorphic, independently of their

2.1. Input data representation 17

Figure 2.3 – Examples of 2-manifolds with different Betti numbers. The sphere and the

leftmost hand, in beige, are homeomorphic. Their Betti numbers are β0 = 1, β1 = 0 and

β2 = 1. They are not homeomorphic to the torus or the other hand, in cyan. For those,

β0 = 1, β1 = 1 and β2 = 1, as a non-collapsible cycle can be drawn around the handles.

geometrical shape. In particular, the Betti numbers are the topological in-

variants that are mostly used in our work, and that are defined through

the notion of homology.

In a few words, homology is a description of topological spaces based

on the number and type of "holes" that they contain. For instance, a disk

is a 2-dimensional manifold, and so is a sphere. However the shape of

the sphere is intrinsically different, as the sphere has no boundary, and is

hollow: it contains a void. Like the sphere, the torus is a 2-dimensional

manifold with no boundary, and it also contains a void. However the

shape of the torus fundamentally differs from the shape of the sphere, as

it presents another kind of "hole", that resembles more a handle than a

void. Those three manifolds are not homeomorphic.

Definition 2.15 (Betti numbers) The homology of a PL d-manifold M (with d ≤ 3) of R3

is described by its Betti numbers β0, β1, . . . βd−1 ∈ N. β0 indicates the

number of connected components ofM. β1 corresponds to its number of

handles (or the number of independent 1-cycles in the case of 2-manifolds

[EH09]) and β2 indicates its number of 3-dimensional voids.

Figure 2.3 illustrates the use of Betti numbers to characterize the topo-

logical shape of PL manifolds. In this example, all four shapes are closed

surfaces, i.e. 2-manifolds without boundary (the hands are hollow). Mani-

folds of same colors are homeomorphic. The sphere and the first hand, in

beige, both verify β0 = 1, β1 = 0 and β2 = 1. In contrast, the torus and the

second hand exhibit a hole, which is described by the value of their 1-st

Betti number, β1 = 1. In particular, the two hands are not homeomorphic:

one has the topological shape of a sphere, and the other of a torus.

Betti numbers can be defined in any dimension. Formally, the p-th

Betti number βp of M is defined as the rank of the p-th homology group

Hp(M). Hp(M) is the quotient group ker ∂p/Im ∂p+1, where ∂p is the

18 Chapter 2. Theoretical Background

boundary operator on the group of chains of p-simplices. This contruc-

tion induces an equivalence relation on the group of so-called p-cycles:

two cycles are equivalent, or homologous, if they can be continuously trans-

formed into each other, through the addition (with modulo 2 coefficients)

of p-simplices, without being reduced to a point. As such, βp represents

the number of non-equivalent cycles of p-simplices inM. For more details

about the construction of simplicial homology, we refer to [EH09].

2.1.3 Scalar field representation

Recall that we focus in this work on scalar data, that is formalized here-

after:

Definition 2.16 (Barycentric coordinates) Let p be a point of Rd and σ a d-simplex. p can

be expressed with a linear combination of the 0-faces {vi}0≤i≤d of σ: p =

∑d
i=0 αivi, where αi ∈ R and ∑d

i=0 αi = 1.

The {αi}0≤i≤d are the barycentric coordinates of p relatively to σ. The

point p belongs to σ if and only if αi ∈ [0, 1] for all i.

Definition 2.17 (Piecewise Linear Scalar Field) Let T be a triangulation and h be a func-

tion that maps the vertices of T to R. Let f be the function mapping

any point p of a d-simplex σ of T to a value f (p) = ∑d
i=0 αih(vi),

where {αi}0≤i≤d are the barycentric coordinates of p relatively to σ.

We say that f is linearly interpolated from h on σ. f is called a piece-

wise linear (PL) scalar field on T .

The notion of PL scalar field is illustrated in Figure 2.4. The field is

characterized by its values on the vertices ofM, and linearly interpolated

on the simplices of higher dimension. This interpolation is efficiently com-

puted on modern hardware, and is a key operation in scientific visualiza-

tion, as it allows to visually represent the different values of the considered

field thanks to an interpolation between colors, resulting in a colormap.

In scientific visualization, some PL scalar fields that we will handle

are for instance the electronic density for molecular datasets (Figure 3.1),

the viscosity in fluid dynamics simulation results (Figure 5.9), material

density in acquired CT scans (Figure 3.17, Figure 4.1), or the magnitude

of a vector field (wind velocity in Figure 5.2, magnetic field in Figure 6.4).

Definition 2.18 (Lower and Upper links) Let f be a PL scalar field on T . The lower link of a

simplex σ ∈ T , noted Lk−(σ), is the subset of the link of σ whose vertices

have a strictly lower value than the vertices of σ. Conversely, the upper

2.1. Input data representation 19

link Lk+(σ) is the subset of Lk(σ) whose vertices have a strictly higher

value than the vertices of σ.

In the remainder of this thesis, we only consider PL scalar fields that

are injective on the set of vertices of M, i.e. that verify f (v0) 6= f (v1)

for two different vertices v0, v1 of M. This requirement is easy to enforce

in practice with a local perturbation of f , on the model of simulation of

simplicity [EM90]. In our application, we apply this perturbation symboli-

cally: we simply consider an additional injective offset field O on the set of

vertices, which we usually set to the index of vertices in the triangulation.

In case of equality of f values between different vertices, we disambiguate

the inequality using the field O. This point is illustrated in Section 4.2.4,

when it arises in our work.

To summarize, our input data is represented by PL scalar fields de-

fined on PL manifolds, which are objects for which we can use topology

to characterize their shape. In the following sections, we will apply topo-

logical considerations to geometrical constructions that can be defined for

PL scalar fields: the level sets and sub-level sets, illustrated in Figure 2.4.

Definition 2.19 (Level set) The level set f−1(w) of an isovalue w ∈ R with respect to a PL

scalar field f :M→ R is defined as the pre-image by f of w:

f−1(w) = {p ∈M | f (p) = w}

Definition 2.20 (Sub-level set) The sub-level set f−1
−∞(w) of an isovalue w ∈ R with respect

to a PL scalar field f :M→ R is defined as the pre-image by f of (−∞, w):

f−1
−∞(w) = {p ∈M | f (p) < w}

The study of the topology of the sub-level set of f for various isovalues

enables to characterize features of interest in the data. In Sections 2.2 and

2.3, we will present how this characterization takes place and how it allows

to encode the main features of a PL scalar field in reduced representations,

what we generally call topological abstractions. We will particularly focus

on the notion of critical points and persistence diagram.

In this manuscript, scalar fields will be visualized with the help of

a colormap (i.e. a correspondence between f values and colors). For vi-

sual consistency purposes, we will use a unique, divergent color palette

throughout the manuscript, as illustrated in Figure 2.4. This palette has

been generated from a painting by Bruce Marsh, using the method by

Samsel et al. [SBB18]. This choice is motivated by the fact that a good

amount of datasets from diverse application fields is presented in this

20 Chapter 2. Theoretical Background

Figure 2.4 – Piecewise linear (PL) scalar field. The values of the field are given at the

vertices of the domain (b, top left) and linearly interpolated on the simplices of higher

dimensions using barycentric coordinates (a), resulting in a PL scalar field (b, top right).

The level set (b, bottom left, opaque surface) and sub-level set (b, bottom right, opaque

volume) of f are geometrical constructions that can be computed on the field.

thesis. In consequence, selecting the same color palette enforces visual

consistency, which helps interpret the numerous figures present in this

thesis. The narrow saturation and hue ranges of this palette provide a

good perceived contrast [SBB18], adapted to the communication of com-

plex information. Additionally, we find this palette aesthetically pleas-

ing. Figure 2.4 shows the colormap as a vertical, colored arrow (center),

from light brown (low f values, bottom) to light green (high f values,

top), transiting through dark brown (middle f values, center). The pre-

cise correspondence between the f values and the palette often needs to

be manually adjusted on a per application basis, for instance, to fine tune

the location of the dark brown level sets to relevant isovalues. Since the

same color palette is used throughout the manuscript, we will omit the

representation of the colormap (arrows in Figure 2.4) in the remainder.

2.2. Critical Points 21

2.2 Critical Points

When considering a scalar field f , as one continuously increases an iso-

value w, the topology of the sub-level set f−1
−∞(w) (described by their

Betti numbers, in 3D the number of their connected components, handles

and voids) only changes at specific locations, named the critical points of

f [Mil63]. In the PL setting (when considering PL scalar field on a PL

manifold M), critical points are bound to correspond to vertices of M.

Banchoff [Ban70] introduced a local characterization of critical points,

defined as follows.

Definition 2.21 (Critical points) Let f be a PL scalar field on a PL manifold M, and

v a vertex of M. If Lk+(v) and Lk−(v) are simply connected, v is a

regular point. Otherwise, v is a critical point of f , and f (v) is called a

critical isovalue.

Definition 2.22 (Extremum) Let v be a critical point of a PL scalar field f . If Lk+(v) is

empty, then v is a local minimum of f . If Lk−(v) is empty, then v is a

local maximum of f . In both cases, v is called a local extremum of f .

Definition 2.23 (Saddle) Let v be a critical point of a PL scalar field f . If v is neither

a local minimum nor a local maximum of f , then v is a saddle point of

f .

For regular vertices, the sub-level sets enter the neighborhood of v, St(v),

through the lower part of the neighborhood boundary, Lk−(v), and exit

through its upper part, Lk+(v), without changing their topology. For criti-

cal points, a change in the topology of f−1
−∞(w) is observed, which is con-

comitant to a change in the topology of the level set in St(v). At the loca-

tion of local minima, a connected component of level set is created. At the

location of local maxima, a connected component of level set disappears.

In the case of PL scalar fields defined on 3-manifolds, the level sets locally

merge at the location of some saddles, denoted 1-saddles, and locally split

at the location of other saddles, called 2-saddles. The local characteriza-

tion of the criticality of vertices (whether they are regular, an extremum or

a saddle) is illustrated in Figure 2.5, along with the topological changes of

level sets at their locations.

The critical points can be classified with regard to their index I(v),
which intuitively corresponds to the number of independent directions of

22 Chapter 2. Theoretical Background

Figure 2.5 – Critical points and regular points with their star, in 2d (top) and 3d (bot-

tom). The criticality of a vertex v (black sphere) of value w is characterized by the connect-

edness of its upper link Lk+(v) (spheres and tubes in cyan), and its lower link Lk−(v)

(spheres and tubes in dark green). In each case, a level set of St(v), taken above the value

w = f (v) is shown in light green, and a level set taken below w in beige. For critical

points, the level sets undergo topological changes as they pass w.

decreasing f values around v. It is equal to 0 for local minima (Lk−(v) =

∅), to d for local maxima (Lk+(v) = ∅) and otherwise to i for i-saddles

(0 < i < d). The critical index of a critical point v can be formally defined

with the notion of reduced Betti numbers of Lk−(v) [EH09].

Adjacency relations between critical points can be captured with the

notion of integral line.

Definition 2.24 (Integral lines) Given a vertex v, its forward integral line, noted L+(v), is

a path along the edges ofM, initiated in v, such that each edge of L+(v)
connects a vertex v′ to its highest neighbor v′′. Then, forward integral lines

are guaranteed to terminate in local maxima of f . A backward integral

line, noted L−(v) is defined symmetrically (i.e. integrating downwards

towards minima).

When encountering a saddle s, we say that an integral line forks: it yields

one new integral line per connected component of Lk+(s). Note that sev-

eral integral lines can merge (and possibly fork later).

Critical points play a central role in Topological Data Analysis, as

they often correspond to features of interest in various applications:

centers of vortices in fluid dynamics [KRHH11], atoms in chemistry

[BGL+
18, GABCG+

14, OGT19] or clusters of galaxies in astrophysics

2.3. Persistence Diagrams 23

[Sou11, SPN+
16]. However in real-world data, in practice, critical points

can appear in large and impractical amounts, due to the presence of nu-

merous small features in the data. This can be the consequence of noise in

the acquisition process, or numerical noise in the simulations for instance.

Depending on the application, this noise may need to be discarded in the

analysis, in order to identify critical points describing actual features of

interest in the data. This is the purpose of persistent homology, introduced

in Section 2.3: it provides an importance measure on critical points, which

is derived from topological considerations.

In the remainder of this work, we represent critical points using

spheres at the localization of the critical points in M, whether M is 2D

or 3D. This simple representation enforces visual consistency across all

figures, which eases their interpretation. It is also consistent with the pre-

ferred representation of critical points in the Topology ToolKit [TTK20],

and more generally ParaView, where vertices are often represented as

spheres. We encode the criticality of critical points with our chosen col-

ormap (Section 2.1.3). Extrema are represented with the extreme colors of

the palette (light brown for minima, light green for maxima). Saddles are

represented with in between colors, as illustrated in Figure 2.6.

2.3 Persistence Diagrams

As seen in the previous section, the topology of the sub-level sets of f

evolves at the location of critical points. Specifically, changes occur in the

Betti numbers of the sub-level sets.

2.3.1 The case of the 0-th Betti number

Let f be PL scalar field defined on a connected PL manifold M. Let

us consider the 0-th Betti number of f−1
−∞(w), that indicates its number of

connected components. A new connected component of f−1
−∞(w) is created

as w passes the value of each local minimum of f . The Elder rule [EH09]

indicates that if two connected components, created at the minima m0 and

m1 with f (m0) < f (m1), meet at a given 1-saddle s0, the youngest of the

two components (the one created at m1) dies in favor of the oldest one

(created at m0). The connected components of f−1
−∞(w) are thus born at the

values of the local minima, and die at the values of the 1-saddles. When w

reaches the maximum value of f , we have f−1
−∞(w) =M, which only has

one connected component: the oldest one, created at the global minimum

24 Chapter 2. Theoretical Background

Figure 2.6 – Minimum/saddle persistence diagram (top right) of a PL scalar field f

defined on a 2d domain (top left). The spheres denote the critical points of f (light

beige: minima, brown: saddles, cyan: maximum). The diagram tracks the evolution of

the connected components of sub-level sets of f (bottom). As the isovalue increases, new

connected components are created in m0, then m1 and m2. Then the connected component

born in m1 dies at s0, as it merges with the older one created in m0. This results in the

pair (m1, s0) in the diagram. Finally, the component created in m2 dies at s1, it is

represented in the diagram by the pair (m2, s1). By convention, the global minimum m0

is paired with the global maximum M0.

of f . This means that every other connected component can be uniquely

associated with a so-called persistence pair (m, s) of a local minimum m

and a 1-saddle s that denote its birth and death locations. The quantity

p = f (s)− f (m) is called the topological persistence of the pair, and denotes

the lifetime of the associated connected component of f−1
−∞(w) in terms of

scalar values. This pairing process is illustrated in Figure 2.6

2.3.2 Notions of persistent homology

This example can be generalized to other Betti numbers and arbitrary di-

mension with the help of Persistent Homology, which formulates the Elder

rule for homology groups. For different isovalues w0 ≤ w1 ≤ . . . ≤ wj, the

2.3. Persistence Diagrams 25

sequence of consecutive sub-level sets verifies:

f−1
−∞(w0) ⊆ f−1

−∞(w1) ⊆ . . . ⊆ f−1
−∞(wj)

This nested sequence can be formalized in a nested sequence of sim-

plicial sub-complexes ofM, using the concept of filtration.

Definition 2.25 (Filtration) Let f be an injective scalar field defined on a simplicial complex

K, such that f (τ) < f (σ) for each face τ of each σ ∈ K. Let n be the

number of simplices of K and Ki be the sub-level set of f by the i-th

value in the sorted set of simplices values. The nested sequence of sub-

complexes K0 ⊆ K1 ⊆ . . . ⊆ Kn−1 = K is called the filtration of f .

Note that this definition requires to associate a scalar value to simplices

with a dimension higher than 0, such as f (τ) < f (σ) for each face τ of

each simplex σ. This requirement enforces that Ki is indeed a simplicial

complex. In the case of PL scalar fields, the particular notion of lower star

filtration is used in practice [EH09].

Recall that we are interested in the evolution of the homology in the

filtration, namely in the number of classes in Hp(Ki) for each dimension p.

Since the filtration is a nested sequence of complexes, the classes in Hp(Ki)

can be tracked in Hp(Kj). Formally, that is because the filtration induces

a sequence of homomorphisms between the homology groups of the sub-

complexes of the filtration. A homomorphism is a map between groups

that commutes with the group operation. In the case of the homology

groups, the group operation is a formal sum of sets (chains) of p-simplices

with modulo 2 coefficients [EH09]. These maps enable to define the per-

sistent homology group Hi,j
p as the image of the homomorphism between

Hp(Ki) and Hp(Kj).

In a few words, as we progress up the filtration, new homology classes

(the different connected components for p = 0, cycles for p = 1, or voids

for p = 2) can arise in Hp(Ki). Conversely, classes can disappear if they

become trivial or merge with one another. In case of a merger, the Elder

rule is applied to state that the youngest one dies at the benefit of the

oldest, created earlier in the filtration. The p-th persistent homology group

Hi,j
p regroups the homology classes that were present in Hp(Ki) and that

still persist up to Hp(Kj). The p-th persistent Betti number β
i,j
p is defined as

the rank of Hi,j
p and indicates the number of these classes.

We once again refer to [EH09] for a formal, more detailed introduction

to persistent homology.

26 Chapter 2. Theoretical Background

Figure 2.7 – Saddle/maximum persistence diagrams of a clean (left) and noisy (right)

scalar field (light brown spheres: minima, cyan: maxima, others: saddles). The main

three hills are clearly apparent in the diagrams (high persistence pairs), whereas small

pairs near the diagonal indicate noisy features.

2.3.3 Topological persistence

We mentioned in Section 2.2 that changes in the homology classes of

f−1
−∞(w) occur at the locations of the critical points [Mil63]. Thus each

topological feature is characterized by a pair of critical points denoting its

birth and death, and whose difference in value indicated its lifespan in the

data, called topological persistence.

As exemplified in Section 2.3.1, the persistence of connected compo-

nents of f−1
−∞(w), described by the 0-th homology group, is character-

ized by minimum/1-saddle critical pairs. For PL scalar fields defined

on 3-manifolds, the 2-saddles are paired with maxima and characterize

the persistence of the voids of f−1
−∞(w), while 1-saddle/2-saddle pairs de-

scribe the persistence of its handles. In the case of 2-manifolds, the 1-

saddle/maximum pairs describe the persistence of the independent cycles

of f−1
−∞(w).

As a result, critical points can be unambiguously matched in persis-

tence pairs (c0, c1), with f (c0) < f (c1) and I(c0) = I(c1) − 1, of topo-

logical persistence p = f (c0)− f (c1). By convention, we pair the global

minimum with the global maximum of f , resulting in a persistence pair

that spans the whole scalar range of f , although the corresponding con-

nected component of f−1
−∞(w) technically never dies.

The topological persistence of each critical pair gives a measure of

importance on the corresponding critical points of the field, that has been

shown to be reliable to distinguish between noise and important features.

The critical pairs are usually visualized in the Persistence diagram [EH09]

of f , noted D(f). The diagram provides a representation of the ensemble

of features in the data, where each persistence pair (c0, c1) is embedded

as a point in the 2D plane, at coordinates
(

f (c0), f (c1)
)
. The persistence

of each pair can thus be read in the diagram as the height of the point

to the diagonal. Consequently, each topological feature of f−1
−∞(w) (the

2.4. Metrics on the space of Persistence Diagrams 27

homology classes of f−1
−∞(w): connected components, cycles and voids) can

be visualized in the diagram as a bar (Figure 2.6 and Figure 2.7), whose

height indicates its importance in the data. Large bars corresponding to

high persistence features stand out visually, while low persistence pairs,

likely to be associated with noisy features, are represented by small bars

in the vicinity of the diagonal. The persistence diagram is a concise visual

depiction of the repartition of features in the data and has been shown

to be a stable [CEH05, CCG+
09] and useful tool for data summarization

tasks. As seen in Figure 2.7, it encodes the number, ranges and salience of

features of interest, and gives hints about the level of noise in the data.

In practical applications, features of interest are often characterized

by the extrema of the field. Thus, in the remainder of this thesis, when

considering persistence diagrams, we will focus on minimum/1-saddle

pairs and (d− 1)-saddle/maximum pairs. The interpretation of features

characterized by 1-saddle/2-saddle pairs is usually more difficult in our

applications.

We chose to represent persistence diagrams with spheres and tubes,

as seen in Figure 2.7, which is the representation used in the Topology

ToolKit [TTK20]. By using spheres, we emphasize that persistence pairs

actually correspond to a pair of two critical points (represented themselves

as spheres in the input data), and the relation to the spheres denoting

the critical points in the domain is further highlighted by the usage of a

common color map (encoding the criticality of the corresponding critical

points). Although to our knowledge no user study was conducted to com-

pare the effectiveness of different visualizations of persistence diagrams,

we believe that using such 3D glyphs helps distinguish nearby pairs.

2.4 Metrics on the space of Persistence Diagrams

The definition of metrics between topological abstractions is an impor-

tant topic, as it enables the comparison and similarity estimation of scalar

fields based on their topology. For persistence diagrams, well-established

metrics have been defined and intensively studied, such as the Wasserstein

distance and the Bottleneck distance. The persistence diagram is stable un-

der these two metrics [CEH05, CSEHM10], which intuitively means that a

small variation in the scalar fields entails a small difference in the resulting

distances.

28 Chapter 2. Theoretical Background

2.4.1 Wasserstein distance between diagrams

The Wasserstein distance was originally defined in the context of Trans-

portation theory [Kan42, Mon81]. For persistence diagrams, intuitively,

this distance aims at optimizing a matching between the features of two

diagrams to compare and penalizes mismatches between these diagrams.

Given two diagrams D(f) and D(g), a pointwise distance, noted dq,

inspired from the Lp norm, can be introduced in the 2D birth/death space

between two points a = (xa, ya) ∈ D(f) and b = (xb, yb) ∈ D(g), with

q > 0, as follows :

dq(a, b) = (|xb − xa|q + |yb − ya|q)1/q = ‖a− b‖q (2.1)

By convention, dq(a, b) is set to zero if both a and b exactly lie on the

diagonal (xa = ya and xb = yb). The Lq-Wasserstein distance, noted Wq,

between D(f) and D(g) can then be introduced as:

Wq
(
D(f),D(g)

)
= min

φ∈Φ

 ∑
a∈D(f)

dq
(
a, φ(a)

)q

1/q

(2.2)

where Φ is the set of all possible assignments φ mapping each point a ∈
D(f) (diagonal included) to a point b ∈ D(g) (diagonal included). Note

that such a mapping can map a point a ∈ D(f) to its diagonal projection,

∆(a) = (xa+ya
2 , xa+ya

2), in D(g) (or reciprocally), which denotes the removal

(or the insertion) of the corresponding feature from the assignment, with

a cost dq
(
a, ∆(a)

)q (Figure 2.8). The Wasserstein distance can be computed

by solving an optimal assignment problem, for which existing algorithms

[Mun57, Mor10] however often require a balanced setting. To address this,

the input diagrams D(f) and D(g) are typically augmented into D′(f) and

D′(g), which are obtained by injecting the diagonal projections of all the

off-diagonal points of one diagram into the other:

D′(f) = D(f) ∪ {∆(b) | b ∈ D(g), xb 6= yb} (2.3)

D′(g) = D(g) ∪ {∆(a) | a ∈ D(f), xa 6= ya} (2.4)

In this way, the Wasserstein distance is guaranteed to be preserved by

construction, Wq
(
D(f),D(g)

)
= Wq

(
D′(f),D′(g)

)
, while making the as-

signment problem balanced (|D′(f)| = |D′(g)|) and thus solvable with tra-

ditional assignment algorithms. In the following, we will focus on q = 2.

2.4. Metrics on the space of Persistence Diagrams 29

Figure 2.8 – Example of a diagonal matching in the assignment between two diagrams

D(f) and D(g) of different cardinality. The augmented diagrams D′(f) (green spheres)

and D′(g) (cyan spheres) are constructed by including the orthogonal projections ∆(a)

(grey dashed lines) of each point a onto the diagonal of the other diagram. The assignment

problem thus becomes balanced (matchings are shown with black lines). This allows a

persistence pair to be matched to a diagonal point (b2 and ∆(b2)). Diagonal points of

different diagrams can be matched together with zero cost.

Geometrical lifting

In the applications, it can often be useful to geometrically lift the Wasser-

stein metric, by also taking into account the geometrical layout of critical

points [SPCT18b]. Let (c, c′) be the critical point pair corresponding to

the point a ∈ D(f). Let pλ
a ∈ Rd be their linear combination with coeffi-

cient λ ∈ [0, 1] in M: pλ
a = λc′ + (1− λ)c. Then, the geometrically lifted

pointwise distance d̂2(a, b) can be given as:

d̂2(a, b) =
√
(1− α)d2(a, b)2 + α||pλ

a − pλ
b ||22 (2.5)

The parameter α ∈ [0, 1] quantifies the importance given to the geometry

of critical points and it must be tuned on a per application basis. The

parameter λ tunes the relative importance given to the geometrical loca-

tion of each critical point of the persistence pairs. As in our applications,

the features of interest are often captured by the extrema of the field, we

recommend to set λ = 1 when considering saddle/maximum persistence

pairs, and λ = 0 when dealing with minimum/saddle persistence pairs.

30 Chapter 2. Theoretical Background

2.4.2 Bottleneck distance between diagrams

When q tends to infinity, the Wasserstein distance converges to the Bottle-

neck distance, another practical metric that measures the worst mismatch

between D(f) and D(g):

W∞
(
D(f),D(g)

)
= min

φ∈Φ

(
max

a∈D(f)
‖a− φ(a)‖∞

)
(2.6)

At the difference of the Wasserstein distance, the Bottleneck distance

does not account for the difference in the numbers of features between

diagrams. As such, it is usually deemed less informative than the Wasser-

stein distance. However the Bottleneck distance between two diagrams

has more explicit stability properties: it is bounded by the L∞ distance

between the corresponding scalar fields [CEH05]:

W∞
(
D(f),D(g)

)
≤ ‖ f − g‖∞ (2.7)

2.5 Other topological abstractions

Some applications call for the use of topological abstractions that are more

discriminative than the critical points or the persistence diagram. Al-

though they do not represent the core subject of our work, we give here-

after some examples for completeness, and to give a glance of the variety

of tools that topological data analysis provides. We briefly introduce the

notions of merge and contour trees, Reeb graphs and Morse-Smale complexes.

We provide illustrations of these topological abstractions in Figure 2.9.

Merge and contour trees

The merge tree tracks the merge events of connected components of sub-

level sets that were described in Section 2.3.1. If we continuously draw a

path that tracks these components from their birth to their death, we are

left with a graph (a 1-simplicial complex) that starts at a local minimum

and merge at a saddle with another path corresponding to another con-

nected component of sub-level set. As the connected components merge

but cannot split, the whole graph is a tree, called the merge tree. If we

build these paths in the ascending order of vertices values, we are left with

monotone paths that visit every vertex. The corresponding tree is called

2.5. Other topological abstractions 31

Figure 2.9 – Examples of other topological abstractions. The merge tree (a, right) induces

a segmentation of the domain (a, left) which enables to extract the bones of the five toes.

The Reeb graph (b) enables the extraction of the skeleton of a complex shape. The Morse-

Smale complex (c, right) provides the segmentation of the domain based on the gradient

of the field. In this example, it enables the segmentation of the cells in this classical

[EH09] acquired biological dataset (c, left). These examples and the corresponding data

are available in the Topology ToolKit’s public repository [TTK20].

an augmented merge tree and provides a segmentation of the domain, that

associates for each vertex the connected component of sub-level set that

first reached it.

The contour tree is a generalization of the merge tree that tracks in addi-

tion the split events of the level sets, and induces a different segmentation

of the domain.

The saddle/extremum persistence diagram can easily be deduced

from the merge tree, for which efficient computation techniques have been

developed, with optimal complexity in all dimensions [CSA00], and with

important acceleration thanks to shared-memory parallelism [GFJT19].

This last method is the implementation available by default in the Topol-

ogy ToolKit [TFL+
17] for the computation of the saddle/extremum per-

sistence diagram.

Reeb graphs

The Reeb graph [Ree46] is the generalization of the contour tree to do-

mains that are not simply connected (i.e. that contains holes), which moti-

vates its use for shape analysis applications [BGSF08]. Like the merge and

contour trees, it provides a segmentation of the domain that is useful in

32 Chapter 2. Theoretical Background

scientific visualization and data analysis, for feature extraction purpose,

or to provide an indexing of contours, so as to efficiently extract level sets.

Morse-Smale complexes

An other widely used topological abstraction is the Morse-Smale complex

[DFFIM15], which encodes the relations between critical points in terms of

unique integral lines of the gradient field. These integral lines segment the

domain into cells in which the gradient integrates to identical extremities.

The Morse-Smale complexe provides a cellular partition of the domain

which shows itself useful in scientific visualization, to capture features

that coincide with the gradient.

3A Progressive Approach to

Scalar Field Topology

Contents

Our contribution in one image . 35

3.1 Context . 36

3.1.1 Related Work . 36

3.1.2 Contributions . 37

3.2 Progressive Data Representation 38

3.2.1 Edge-Nested Triangulation Hierarchy 38

3.2.2 Edge-Nested Triangulations of Regular Grids 40

3.2.3 Topologically Invariant Vertices 42

3.3 Progressive Critical Points 46

3.3.1 Initialization and Updates 47

3.3.2 Computation Shortcuts . 49

3.3.3 Parallelism . 49

3.3.4 Extremum Lifetime . 49

3.4 Progressive Persistence Diagrams 50

3.4.1 Persistence Diagram from Critical Points 52

3.4.2 Progressive Strategy . 54

3.4.3 Parallelism . 54

3.5 Results . 55

3.5.1 Progressive Data Representation 55

3.5.2 Time Performance . 58

3.5.3 Stress Cases . 61

3.5.4 Progressive Topological Visualization and Analysis 62

3.6 Limitations and Discussion . 65

3.7 Summary . 66

33

34 Chapter 3. A Progressive Approach to Scalar Field Topology

This chapter introduces progressive algorithms for the topological anal-

ysis of scalar data. Our approach is based on a hierarchical represen-

tation of the input data and the fast identification of topologically invariant

vertices, which are vertices that have no impact on the topological descrip-

tion of the data and for which we show that no computation is required

as they are introduced in the hierarchy. This enables the definition of ef-

ficient coarse-to-fine topological algorithms, which leverage fast update

mechanisms for ordinary vertices and avoid computation for the topolog-

ically invariant ones. We demonstrate our approach with two examples of

topological algorithms (critical point extraction and persistence diagram

computation), which generate interpretable outputs upon interruption re-

quests and which progressively refine them otherwise. Experiments on

real-life datasets illustrate that our progressive strategy, in addition to the

continuous visual feedback it provides, even improves run time perfor-

mance with regard to non-progressive algorithms and we describe further

accelerations with shared-memory parallelism. We illustrate the utility of

our approach in batch-mode and interactive setups, where it respectively

enables the control of the execution time of complete topological pipelines

as well as previews of the topological features found in a dataset, with

progressive updates delivered within interactive times.

The work presented in this chapter has been published in the jour-

nal IEEE Transactions on Visualization and Computer Graphics in 2021

[VGT21]. It was certified replicable by the Graphics Replicability Stamp

Initiative (http://www.replicabilitystamp.org/). The code and data

needed to reproduce the results presented in this chapter are available

at https://github.com/julesvidal/progressive-scalar-topology. Addition-

ally, our implementation has been integrated in the Topology ToolKit

[TFL+
17].

http://www.replicabilitystamp.org/
https://github.com/julesvidal/progressive-scalar-topology

35

Our contribution in one image

Figure 3.1 – Progressive persistence diagrams (saddle-maximum pairs) of the electron density of the adenine-thymine (AT)

molecular system (an isosurface shows the two molecules), for a few steps of the progressive computation. Our coarse-to-fine

approach efficiently refines the persistence diagram by progressing down a hierarchical representation of the input (from left to

right). Maxima (denoting the atoms) are shown in the domain (a) with spheres, scaled by topological persistence and colored

by lifetime in the data hierarchy (from red to dark blue). In this example, the persistence diagram (b) progressively captures

the main features of the data. As of 8% of the computation time (leftmost), two persistent maxima are captured, denoting

the presence of two molecules. As the computation progresses, atoms are progressively captured, heavier atoms first: oxygens,

then nitrogens and carbons, and finally hydrogens are respectively all captured as of 12.5%, 17% and 33% of the computation

time. At this point the diagram is complete and its accuracy is then improved until the final, exact result (rightmost). This

qualitative progression is confirmed quantitatively by the empirical convergence of the L2-Wassserstein distance to the final

output (c), which is monotonically decreasing: more computation time indeed yields more accuracy. Our algorithms leverage

efficient update mechanisms and topologically invariant vertices (TI), which can be quickly identified and for which we

show that no computation is required, thus drastically reducing the workload (WL) of the algorithm with time. Overall, our

progressive approach efficiently computes the persistence diagram of the data, while continuously providing relevant visual

feedback.

36 Chapter 3. A Progressive Approach to Scalar Field Topology

3.1 Context

3.1.1 Related Work

In this chapter, we introduce the first progressive algorithms for the com-

putation of topological abstractions, namely critical points (Section 3.3)

and persistence diagrams (for extremum-saddle pairs, Section 3.4). Our

approach is based on a hierarchical representation of the data. Mul-

tiresolution hierarchies have been considered before, for the Reeb graph

[HSKK01b], the contour tree [PCMS04] and the Morse-Smale com-

plex [BEHP03, GRP+
12, IF17], but the hierarchical aspect dealt with the

output data structure, while the input was processed without multiresolu-

tion, with existing algorithms [BFS00, CSA00, EHZ01]. In contrast, in our

work, the input data is represented as a multiresolution hierarchy and the

output is efficiently, progressively updated in a coarse-to-fine manner, by

iterating through the hierarchy levels.

Our progressive scheme relies on a hierarchical representation of the

input data. In the visualization community, many types of hierarchies

have been defined to encode and extract visual representations from vol-

umetric data at different levels of details [GDL+
02, WF09b, WF09a, PB00,

LVLM04, GP00]. For example, Gerstner and Pajarola [GP00] introduce

a method for the robust extraction of isosurfaces in multiresolution vol-

ume representations. For this, their algorithm extracts the critical points

of the input scalar field, for each level of their hierarchical scheme. How-

ever, they use for this the standard, non-progressive, procedure [Ban70].

In contrast, our approach extracts the critical points for all of our hier-

archy levels progressively, i.e. without recomputing from scratch critical

points at each new hierarchy level, but instead by efficiently and mini-

mally updating the information already computed at the previous levels.

Generally, in our work, we focus on a specific scheme based on the so-

called red subdivision [H. 42, R.E83, Loo87, J. 95, S. 95] applied to regular

grids [Kuh60, Bey98], in particular to investigate progressive and efficient

coarse-to-fine computations, in contrast to the traditional fine-to-coarse hi-

erarchical approaches found in the visualization literature.

The approaches which are the most related to our work are probably

the streaming algorithms for computing the Reeb graph [PSBM07] and

the merge tree [BWT+
11]. These algorithms are capable of computing

their output in a streaming fashion: the simplices of the input domain can

be processed in arbitrary order and these algorithms maintain and itera-

3.1. Context 37

tively complete their output data structure. However, while they can be

interrupted, these algorithms are not, strictly speaking, progressive: upon

interruption, they do not provide interpretable but partial results, which

are very far in practice from the final result. For instance, the stream-

ing Reeb graph [PSBM07] can typically count at a given time a very large

number of loops (which will be iteratively filled as the algorithm pro-

gresses). In contrast, our coarse-to-fine algorithms provide interpretable

results upon interruption, which are visually similar to the exact, final

outputs and which empirically quickly converge towards them.

3.1.2 Contributions

This chapter presents the following new contributions:

1. A progressive data representation (Section 3.2) We present an approach for

the progressive topological analysis of scalar data, to generate inter-

pretable outputs upon interruption requests. Our approach relies on a

hierarchical representation of the input data (derived from established

triangulation subdivision schemes [H. 42, Kuh60, R.E83, Loo87, J. 95,

S. 95, Bey98]) and the fast identification of the new notion of topologically

invariant vertices, for which we show that no computation is required as

they are introduced in the hierarchy.

2. A progressive algorithm for critical point extraction (Section 3.3) We intro-

duce a progressive algorithm for critical point extraction. As it pro-

gresses down the data hierarchy, our algorithm leverages efficient up-

date mechanisms for ordinary vertices and avoids computation for the

topologically invariant ones. This enables a progressive output re-

finement, which results in even faster overall computations than non-

progressive methods. We also introduce a fast heuristic to evaluate the

lifetime of critical points in the data hierarchy.

3. A progressive algorithm for persistence diagram computation (Section 3.4) We

introduce a progressive algorithm for the computation of persistence

diagrams of extremum-saddle pairs, built on top of the above contribu-

tions. In practice, our algorithm tends to capture the main features of

the data first, and then progressively improves its accuracy. This is con-

firmed quantitatively by the empirical convergence of the Wasserstein

distance to the final output, which is monotonically decreasing (more

computation time indeed yields more accuracy). Our approach enables

38 Chapter 3. A Progressive Approach to Scalar Field Topology

a continuous visual feedback, while being in practice even faster overall

than non-progressive methods.

3.2 Progressive Data Representation

This section details our hierarchical scheme for the progressive represen-

tation of the input data, which relies on a hierarchy of triangulations H
derived from established subdivision schemes [H. 42, R.E83, Loo87, J. 95,

S. 95]. In particular, our goal is to define a hierarchical scheme that will

enable efficient update mechanisms between hierarchy levels. This will

avoid, at each new level of the hierarchy, the recomputation from scratch of

the topological data representations presented in Sections 3.3 and 3.4, and

this will instead enable their progressive update. After a generic descrip-

tion of the employed triangulation hierarchy (Section 3.2.1), we present

for completeness an efficient implementation [Kuh60, Bey98] for the spe-

cial case of triangulations of regular grids (Section 3.2.2), on which we

focus in this thesis (Section 3.6 discusses generalizations). Next, we re-

sume our generic description (Section 3.2.3) and show how to leverage the

specific structure of the employed triangulation hierarchy to accelerate the

topological analysis of the data. For this, we introduce the novel notion of

Topologically Invariant Vertices, which is central to our work.

3.2.1 Edge-Nested Triangulation Hierarchy

Our progressive representation of the input data is based on a multireso-

lution hierarchy of the input PL-manifoldM, which relies on established

subdivision schemes [H. 42, R.E83, Loo87, J. 95, S. 95]. Intuitively, our

goal is to define a multiresolution hierachy that will enable the efficient

update of the topological information computed at the previous levels, in

order to avoid full re-computations (Section 3.3). In order to construct

such a hierarchical scheme, as formalized next, we impose that, as one

progresses down the hierarchy, new vertices are only inserted along pre-

existing edges (exactly one new vertex per edge, typically at their cen-

ter), and that the additional new edges only connect new vertices (Fig-

ure 3.2). This will have the beneficial effect of preserving, from one hierar-

chy level to the next, the structure of the local neighborhood around each

pre-existing vertex (of its link, as discussed in Section 3.2.3), which will

in turn effectively enable fast updates of the pre-existing local topological

information (Section 3.3). We call such a hierarchy edge-nested and we for-

3.2. Progressive Data Representation 39

malize it in the following, to introduce the notations that will be used in

the rest of the chapter. Let H = {M0,M1, . . . ,Mh} be a hierarchy of PL

d-manifolds, which respects the following key conditions.

1. Old Vertex Condition: Each vertex ofMi (the triangulation at level i)

also belongs to the vertex set, notedMi+1
0 , ofMi+1:

Mi
0 ⊂Mi+1

0 (3.1)

The vertices ofMi+1 already present inMi are called old vertices (black

spheres in Figure 3.2).

2. New Vertex Condition: Each vertex ofMi+1 not present inMi has to

be located on an edge (v0, v1) of Mi (typically at its center), as sum-

marized below, whereMi
1 stands for the edge set ofMi:

∀v ∈Mi+1
0 , v /∈Mi

0 : ∃(v0, v1) ∈Mi
1, v ∈ (v0, v1) (3.2)

The vertices of Mi+1 not present in Mi are called new vertices (white

spheres in Figure 3.2).

3. Old Edge Condition: Each edge (v0, v1) ofMi has to be subdivided at

level i + 1 at exactly one new vertex v ofMi+1:

∀(v0, v1) ∈Mi
1 : |{v ∈ (v0, v1), v /∈Mi

0, v ∈Mi+1
0 }| = 1

(v0, v) ∈Mi+1
1 , (v, v1) ∈Mi+1

1

(v0, v1) /∈Mi+1
1

(3.3)

The edges ofMi+1 obtained by subdivision of an edge ofMi are called

old edges, they connect old vertices to new vertices (gray cylinders in

Figure 3.2).

4. New Edge Condition: Each edge ofMi+1 which is not an old edge has

to connect two new vertices, and it is called a new edge (white cylinders

in Figure 3.2).

Figure 3.2 presents a simple example of 2D edge-nested triangulation

hierarchy. Note that the Loop subdivision [Loo87] is compatible with the

above formalization, which is more generally termed as red subdivision in

the scientific computing literature, and which has been extensively studied

for domains of two [R.E83], three [J. 95, S. 95] and arbitrary dimensions

[H. 42]. An input PL manifold M admits an edge-nested triangulation

hierarchy if there exists a hierarchy H for which M is the last element

(M =Mh).

40 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.2 – Edge-nested triangulation hierarchy for a simple 2D example. Old ver-

tices/edges are shown in black/gray. New vertices and edges are shown in white.

3.2.2 Edge-Nested Triangulations of Regular Grids

While the construction of an edge-nested triangulation hierarchy given an

arbitrary input manifoldM is an open question which we leave for future

work (see Section 3.6), it can be shown that such a hierarchy exists for

regular grids, and that it can be implemented very efficiently, as discussed

by Bey [Bey98]. We describe this implementation in the following for the

sake of completeness, by detailing how to efficiently retrieve an arbitrarily

coarse version of the fine triangulationMh from an input regular grid G0.

Let G0 be a d-dimensional regular grid, with d equal to 2 or 3 in our

applications, of dimensions L0
x, L0

y, L0
z
(
i.e. of number of vertices |G0

0 | =
(L0

x + 1)× (L0
y + 1)× (L0

z + 1), in 2D: L0
z = 0

)
. We will first assume that

L0
x, L0

y and L0
z are all powers of 2. Let φ0 be the triangulation operator,

which transforms G0 into a valid triangulation Mh, i.e. Mh = φ0(G0),

by preserving vertex sets, i.e. Mh
0 = G0

0 , and by inserting exactly one

edge for each i-dimensional cell of G0 (1 < i ≤ d), according to a unique

pattern, which is invariant by translation along the cells of the grid, known

as Kuhn’s triangulation [Kuh60]. In 2D, each quadrilateral is subdivided

into two triangles by inserting one edge always along the same diagonal. In

3D, each hexahedron is subdivided into six tetrahedra by always inserting

the same diagonal edges (Figure 3.3).

Let Π1 be the decimation operator, which transforms the regular grid G0

into a regular grid G1, i.e. G1 = Π1(G0), by selecting one vertex every

Figure 3.3 – Translation invariant local triangulation pattern for the cells of a 2D and

3D regular grid. In 2D, quadrilaterals are subdivided into two triangles (a), always along

the same diagonal. In 3D, the generalization of this pattern subdivides each hexahedron

into six tetrahedra (b).

3.2. Progressive Data Representation 41

M0 M1 . . . Mh−1 Mh

Gh Gh−1 . . . G1 G0

φh

Πh

φh−1

Πh−1 Π2

φ1

Π1

φ0

Figure 3.4 – Commutative diagram for the generation of an edge-nested triangulation hi-

erarchy H = {M0,M1, . . . ,Mh} from a regular grid G0. The hierarchy can be obtained

by a sequence of decimation operators Πi, accompanied with triangulation operators φi.

two vertices in each dimension. Let (i, j, k) be the grid coordinates of a

vertex v ∈ G0. Then the grid G1 is obtained by only selecting the ver-

tices with even grid coordinates (i, j, k) in G0. In 2D, each quadrilateral

of G1 corresponds in the general case to four quadrilaterals of G0 and in

3D, each hexahedron of G1 corresponds to eight hexahedra of G0. Note

that the decimation operator Π1 induces a reciprocal subdivision operator,

which, given G1, yields G0 by inserting a new vertex in the center of each

i-dimensional cell of G1 (0 < i ≤ d).

We now introduce by recurrence a sequence of decimation operators

Πi (Figure 3.4), which decimate each grid G i−1 into a grid G i by sub-

sampling its vertices with even grid coordinates as described above. It

follows that for a given level of decimation i, the dimensions of G i are

given by Li
x = L0

x/2i, Li
y = L0

y/2i, and Li
z = L0

z/2i. Let us now consider

the sequence of triangulation operators φi, which triangulate each grid

G i into a triangulation Mh−i, i.e. Mh−i = φi(G i), as illustrated by the

commutative diagram of Figure 3.4. Then, it can be verified (Figure 3.5)

that each condition of Section 3.2.1 is indeed satisfied by the sequence

H = {M0,M1, . . . ,Mh} and that H is a valid edge-nested triangulation

hierarchy. In particular, as described by Bey [Bey98], any triangulationMi

can be equivalently obtained either: (i) by applying the red subdivision

scheme [R.E83, J. 95, S. 95] i times on M0 or (ii) by considering the Kuhn

triangulation [Kuh60] of Gh−i (itself obtained by i regular subdivisions of

Gh). In other words, any triangulationMi in the commutative diagram of

Figure 3.4 can be obtained by starting either (i) from M0 or (ii) from Gh.

In our work, we exploit this equivalence property, but in reverse: we use it

to efficiently retrieve an arbitrarily coarse version of the fine triangulation

Mh of the input grid G0.

In particular, the edge-nested triangulation hierarchy H can be imple-

mented very efficiently, by encoding the entire hierarchy implicitly, and

42 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.5 – Edge-nested triangulation hierarchy generated from a regular grid. Old

vertices/edges are shown in black/gray in M2. There is a one-to-one mapping (colors

fromM0 toM1) between the edges ofM0 and the new vertices of Gh−1, inserted in each

i-dimensional cell of Gh (0 < i ≤ d).

by only maintaining the grid G0 in memory. At a given hierarchy level i,

adjacency relations in Mi between two vertices v0 and v1 can be inferred

based on their grid coordinates at level i, (i0, j0, k0) and (i1, j1, k1), and

given the triangulation pattern shown in Figure 3.3. Then, the data values

associated to the vertices v0 and v1 can be retrieved by mapping these ver-

tices back to their original locations in G0, given by the grid coordinates

(i0 × 2h−i, j0 × 2h−i, k0 × 2h−i) and (i1 × 2h−i, j1 × 2h−i, k1 × 2h−i). This ap-

proach is easily extended to support regular grids whose dimensions, L0
x,

L0
y or L0

z are not necessarily powers of 2. In particular, when considering

the decimation operator Πi, in case some of the dimensions Li−1
x , Li−1

y or

Li−1
z are not even, Πi systematically adds the last vertex of G i−1 for each

odd dimension. In our progressive algorithms (Sec. 3.3 and 3.4), these

few extra vertices will require full recomputations. Below, we resume our

generic description for arbitrary edge-nested triangulation hierarchies, not

necessarily obtained from regular grids (Section 3.6 discusses generaliza-

tions).

3.2.3 Topologically Invariant Vertices

The input edge-nested triangulation hierarchy H yields a hierarchy of PL

scalar fields { f 0, f 1, . . . , f h}, such that each old vertex v maintains by con-

struction its scalar value: f i(v) = f j(v) = f (v), ∀j / i ≤ j ≤ h. In the fol-

lowing, we show how the specific structure of edge-nested triangulation

hierarchies described in Section 3.2.1 can be leveraged to efficiently up-

date topological information while progressing down the hierarchy. First

3.2. Progressive Data Representation 43

we show that edge-nested triangulations preserve the topology of the link

of vertices when progressing from one hierarchy level to the next. This

enables the quick identification, discussed next, of vertices which do not

change their criticality when progressing down the hierarchy. We call

these vertices topologically invariant old vertices, as they will need no up-

date during subsequent analyses (Section 3.3 and Section 3.4). Last, we

show how to efficiently identify new vertices that are guaranteed by con-

struction to be regular points of f i, which we call topologically invariant

new vertices and for which no computation will be required in subsequent

analyses.

Link Topological Invariance:

A first insight is that the link Lk(v) of a vertex v is topologically invariant

throughout the hierarchy. This property is important because it will en-

able the fast identification of vertices which do not change their criticality

(next paragraph). Let Lk(v)i be the link of v at level i, then there exists a

one-to-one mapping Ψi (Figure 3.6) between the simplices of Lk(v)i and

Lk(v)i+1 – such that Lk(v)i+1 = Ψi
(

Lk(v)i) – which preserves the simpli-

cial structure of Lk(v)i (e.g. the adjacencies). Indeed, (i) new vertices are

only inserted on old edges (this maps the kth neighbor of v at level i to

its kth new neighbor at level i + 1, top red arrow in Figure 3.6) and (ii)

new edges are only inserted between new vertices (this maps the kth edge

of Lk(v)i to the kth new edge of Lk(v)i+1, right red arrow in Figure 3.6).

This mapping Ψi can be viewed as a combinatorially invariant zoom in the

neighborhood of v as one progresses down the hierarchy.

Figure 3.6 – Link topological invariance of edge-nested triangulations. From one hier-

archy level (i) to the next (i + 1), edge-nested triangulations preserve the local structure

of the link Lk(v)i of an old vertex v (red sphere). In particular, there exists a one-to-one

mapping Ψi between the vertices and the edges (red arrows) of Lk(v)i and Lk(v)i+1.

44 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.7 – Topologically Invariant Old Vertex. The link invariance enables the fast

identification of old vertices which do not change their criticality: these are old vertices

(red sphere) for which the polarity (blue signs) remains unchanged from one hierarchy

level (i) to the next (i + 1) and for which, therefore, connected components of lower and

upper links (green and blue components, respectively) do not change (thus, requiring no

update). Such vertices are called topologically invariant old vertices

Topologically Invariant Old Vertices

A second insight deals with the evolution of the data values on the

link of an old vertex, as one progresses down the hierarchy and zooms

with the above mapping Ψi. We define the polarity of Lk(v)i, noted

δ : Lk(v)i → {−1, 1} as the field which assigns to each neighbor n of v at

level i the sign of its function difference with v: δ(n) = sgn
(

f (n)− f (v)
)
.

The polarity is positive in the upper link, negative in the lower link (Fig-

ure 3.7, blue signs). Let (v0, v1) be an edge at level i, which gets subdi-

vided at level i + 1 along a new vertex vn. Assuming that f (v0) < f (v1),

we say that vn is monotonic if f (vn) ∈
(

f (v0), f (v1)
)
. Otherwise, vn is non-

monotonic. In that case, if vn’s polarity in Lk(v0)i+1 is the opposite of v1’s

polarity in Lk(v0)i, we say that v0 is impacted by its neighbor vn. Now, if

an old vertex v is not impacted by any of its non-monotonic neighbors, its

link polarity is maintained (i.e. the blue signs in Figure 3.7 remain un-

changed when going from the hierarchy level i to i + 1). This implies that

v is therefore guaranteed to maintain its criticality: it maintains its critical

index (i.e., I(v)i+1 = I(v)i) or it remains regular. Indeed, each neighbor

n which does not impact v maintains its classification as being upper or

lower. Then, since there is a one-to-one mapping Ψi (see Figure 3.6) be-

tween Lk(v)i and Lk(v)i+1 which preserves their simplicial structure, it

follows that the complexes Lk−(v)i+1 and Lk+(v)i+1 are respectively iden-

tical to Lk−(v)i and Lk+(v)i. Thus, the number of connected components

of lower and upper links are maintained, preserving the criticality of v.

Old vertices which are not impacted by their non-monotonic neighbors

are called topologically invariant old vertices.

3.2. Progressive Data Representation 45

Figure 3.8 – Topologically Invariant New Vertex, on a 2D (left) and a 3D (right) example.

A new vertex v which is monotonic (i.e. f (v0) < f (v) < f (v1), with v0 and v1 being

respectively the lowest and highest vertex of the edge (v0, v1) where v is inserted) is

guaranteed to be regular if all its adjacent new neighbors (in the figure, n0 and n1) are

also monotonic. Such vertices are called topologically invariant new vertices.

Topologically Invariant New Vertices

A third insight deals with the link of new vertices. Given a new monotonic

vertex v (small red spheres in Figure 3.8) subdividing an edge (v0, v1) at

level i (red cylinders in Figure 3.8), if its new neighbors are all monotonic

as well, v is then called an interpolating vertex and it can be shown that v

must be a regular vertex.

First, since v is monotonic, it cannot be an extremum, since by defini-

tion it is connected to one lower (v0) and one upper (v1) old vertex (large

green and blue spheres in Figure 3.8). Note that v0 and v1 are the only

old vertices adjacent to v. Second, to show that v is regular, we argue that

Lk+(v)i is necessarily connected (and so is Lk−(v)i, symmetrically). Let

(v0, v1, o) be a triangle at level i− 1 (red triangles in Figure 3.8). At level i,

the edges (v0, o) and (v1, o) are subdivided along the new vertices n0 and

n1 and the new edges (v, n0), (v, n1), and (n0, n1) are inserted to connect

the new vertices.

Let us assume that f (n0) > f (v). n0 is then an upper neighbor of v

(n0 ∈ Lk+(v)i). Since n0 is monotonic, this means that the outer old vertex

o (which is not in Lk(v)i) must also be upper: f (o) > f (n0) > f (v). Since

n1 is monotonic as well, it follows that n1 is upper too. Thus, there exists a

path {v1, n1, n0} ∈ Lk(v)i (blue arrow in Figure 3.8), which connects v1 to

n0 and which is only composed of upper vertices. Thus n0 and v1 belong

to the same connected component of Lk+(v)i. The same reasoning holds

for all the new upper neighbors of v. It follows that Lk+(v)i and Lk−(v)i

are both made of a single connected component, containing exactly one

old vertex each, v1 and v0 respectively. Thus, v is regular. Note that this

reasoning readily applies to 2D and 3D, as demonstrated in Figure 3.8.

46 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.9 – Topologically Invariant (TI) vertices (numbers denote f values). When

progressing down the hierarchy, two non-monotonic vertices appear (red labels). This

yields new critical points (cyan: maxima, green: saddles, brown: minimum). Old TIs

(blue labels), whose link polarity is unchanged, maintain their criticality. New TIs are

regular (green label). For topologically invariant vertices (blue and green labels), no

computation is required. As illustrated in Table 3.1 (page 58), TI vertices represent the

majority of the data in real-life datasets.

Since interpolating vertices, such as v, imply no topological event in the

sub-level sets, we call them topologically invariant new vertices.

The three key insights of edge-nested triangulations discussed above

(summarized in Figure 3.9) form the cornerstone of our progressive ap-

proach to topological analysis. As detailed next, checking if vertices are

topologically invariant turns out to be less computationally expensive in

practice than computing their criticality from scratch. Moreover, the set of

topologically invariant vertices tends to represent the majority of the hier-

archy (see Section 3.5). This allows for the design of efficient progressive

algorithms, presented in the next sections.

3.3 Progressive Critical Points

Our progressive algorithm for critical point extraction starts at the first

level of the hierarchy, M0, and progresses level by level down the hier-

archy H until reaching its final level, Mh, or until interrupted by a user.

At each level i, our approach delivers the entire list of critical points of

the data for the current resolution (f i : Mi → R). For this, our strategy

consists in avoiding recomputation as much as possible and instead effi-

ciently and minimally update the information computed at the previous

level (i− 1).

3.3. Progressive Critical Points 47

3.3.1 Initialization and Updates

This section focuses on the vertices of H which are not topologically in-

variant. The case of topologically invariant vertices is discussed in Sec-

tion 3.3.2. In short, our approach computes the criticality of each vertex

with the traditional method [Ban70] at the first hierarchy level. How-

ever, for the following levels, instead of re-starting this computation from

scratch, our algorithm maintains the criticality information computed at

the previous levels and only minimally updates this information, where

needed, by using dynamic trees [ST83], a specialized data structure for

dynamic connectivity tracking.

At the first hierarchy level, M0 only contains new vertices for which

the criticality needs to be initialized. As of the second level, old and new

vertices start to co-exist in M1 and fast update mechanisms can be con-

sidered to efficiently update the criticality of the old vertices. For this, we

leverage the topological invariance of the link of each old vertex through-

out the hierarchy (Section 3.2.3). This allows to store relevant topological

information on the link and to quickly update them when progressing

down the hierarchy. In particular, we initialize for each new vertex v at

level i the following information:

• Link 1-skeleton: We store the list of local edges (and their adjacencies) of

Lk(v)i, encoded with pairs of local indices for the neighbors of v. This

remains invariant through H (Section 3.2.3).

• Link polarity: We store for each vertex of Lk(v)i its polarity (Section 3.2.3),

i.e. its classification as being upper or lower than v. This is encoded

with one bit per vertex of Lk(v)i.

• Link dynamic tree: An efficient data structure [ST83] for maintaining con-

nected components in dynamic graphs, discussed below.

For each new vertex v which is not topologically invariant, the follow-

ing data structures are initialized: a list of pairs of local neighbor indices

denoting the local edges of Lk(v)i (up to 24 pairs in a 3D grid), a list of bits

denoting the polarity of each neighbor (up to 14 neighbors in a 3D grid),

and the dynamic tree, detailed below. The criticality of v is computed with

the traditional approach (Section 2.2), by enumerating the connected com-

ponents of Lk+(v)i and Lk−(v)i. This is usually achieved with breadth-

first search traversals or with a Union-Find (UF) data structure [CLRS09].

However, in our setting, we would like to update these connected com-

ponents as the algorithm progresses down the hierarchy. In particular, if

48 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.10 – Updating the criticality of a non-topologically invariant old vertex. From

left to right: initial state, identification of non-monotonic vertices (red circles), update of

the link polarity (red +/− signs), and update of the connected components of Lk+(v) and

Lk−(v). At each step, edges present in the dynamic tree [ST83] are highlighted in red.

Only the edges impacted by polarity flips need to be updated in the dynamic tree: edges

(0, 1), (3, 4) and (4, 5) are removed, and the edge (0, 5) is added.

a local edge e belongs to the upper link of v at level i, but not anymore

at level i + 1, the connected components of Lk+(v)i+1 need to be updated

accordingly, preferably without recomputing them completely. For this,

we use dynamic trees [ST83], which, like the UF data structure, maintain

connected components in a graph upon edge insertion, but unlike the UF,

also maintain them upon edge removal. In particular, all the vertices of

Lk(v)i are initially inserted in the dynamic tree associated to v. Next, we

insert each local edge of Lk(v)i in the dynamic tree, if both its ends have

the same polarity. The criticality of v is then deduced by enumerating the

connected components with positive and negative polarity, thanks to the

dynamic tree.

For each old vertex v which is not topologically invariant (Figure 3.10),

its link polarity is quickly updated based on the non-monotonic new ver-

tices of Lk(v)i. Each local edge e of Lk(v)i which is impacted by a polarity

flip of its vertices (Section 3.2.3) is removed from the dynamic tree asso-

ciated to v if it was present in it (to account for the corresponding dis-

connection of lower/upper link component), and added to it otherwise, if

both its ends have the same polarity (if they belong to the same lower/up-

per link component). Then, the criticality of v is quickly updated with

the fast enumeration of the connected components of positive and nega-

tive polarity provided by the dynamic tree. Note that such an efficicent

update of the criticality of v would not be feasible with a simple UF data

structure, as the connected components of the link of v would need to be

recomputed from scratch upon edge removal.

3.3. Progressive Critical Points 49

3.3.2 Computation Shortcuts

When moving from the hierarchy level i to i + 1, topologically invariant

old vertices are guaranteed to maintain their criticality (Section 3.2.3). For

these, the dynamic trees (Section 3.3.1) do not need to be updated. More-

over, when moving from the hierarchy level i to i + 1, each topologically

invariant new vertex v is guaranteed to be regular. For these, the dynamic

trees (Section 3.3.1) are not even initialized (they will only be used when

v becomes no longer topologically invariant). Overall, our procedure to

update vertex criticality can be summarized as follows:

1) Mononotic vertices: in this step, we loop over all new vertices to check

whether or not they are monotonic.

2) Link polarity: in this step, we loop over all vertices to initialize/update

their link polarity. For old vertices, updates are only needed for their non-

mononotic neighbors. If an old vertex v is topologically invariant, no more

computation is required for it at this hierarchy level.

3) Old vertices: each old vertex v which is not topologically invariant

efficiently updates its criticality in f i as described in Section 3.3.1.

4) New vertices: if a new vertex v is topologically invariant, it is classified

as regular and no more computation is required for it at this hierarchy

level. Otherwise, its criticality is updated (Section 3.3.1).

3.3.3 Parallelism

Critical point computation is an operation which is local to the link of

each vertex. Thus, each of the four steps introduced above can be trivially

parallelized over the vertices ofMi with shared-memory parallelism. This

implies no synchronization, at the exception of the sequential transition

between two consecutive steps.

3.3.4 Extremum Lifetime

As our algorithm progresses down H, the population of critical points

evolves. In practice, this means that some features of interest may be

captured by the progressive algorithm earlier than others, denoting their

importance in the data. To evaluate this, we consider for each extremum

e the notion of Lifetime, defined as l(e) = ld(e) − la(e), where la(e) and

ld(e) stand for the levels where e appeared and disappeared respectively.

The evaluation of this measure requires a correspondence between the ex-

trema computed at the levels i and i + 1, which is in general a challenging

50 Chapter 3. A Progressive Approach to Scalar Field Topology

assignment optimization problem [JS06, KE07, BWT+
11, RKWH12, SW17,

SPCT18c]. For simplicity, we focus here on a simple yet time-efficient

heuristic for estimating these correspondences, which can be enabled op-

tionally.

Given a vertex v, identified as maximum at hierarchy level i − 1, our

heuristic consists of computing, for each neighbor n of v, a forward inte-

gral line L+(n)i (see definition 2.24, page 22). Each of these lines termi-

nates on local maxima of f i, which we add to the set of candidates for v.

At the end of this step, we establish the correspondence between v and

its highest candidate in terms of f i values, noted m∗, and we say that v

maps to m∗ from i− 1 to i. To focus the integration on a reasonable neigh-

borhood, we restrict the number of edges on each integral line to a user

parameter Lmax, set to 10 in our experiments. If the set of candidates of v is

empty, the maximum present in v at level i− 1 is considered to disappear

at level i
(
ld(v) = i

)
. It is possible, given a maximum m at level i, that no

maximum from the level i− 1 maps to it. In this case, m is said to appear at

the level i
(
la(m) = i

)
. Finally, if multiple maxima at level i− 1 map to the

same maximum at level i, they are all considered to disappear at the level

i, at the exception of the oldest maximum (minimizing la), as suggested by

the Elder rule in the case of persistence [EH09]. This optional procedure is

run at each hierarchy level and enables the progressive estimation of the

lifetime of the maxima. Note that the lifetime of minima is estimated with

the symmetric procedure.

3.4 Progressive Persistence Diagrams

Our approach for progressive persistence diagrams leverages and com-

bines the insights and algorithms introduced in the previous sections. It

starts at the coarsest hierarchy level, M0, and then iterates progressively

through the hierarchy levels, producing the exact persistence diagram

D(f i) for each level i, until i = h. We first introduce our approach in

the non-progressive case (Section 3.4.1, Figure 3.12), and then present our

progressive strategy (Section 3.4.2). We focus on minimum-saddle pairs,

saddle-maximum pairs being treated symmetrically (in which case, each

boundary component is considered as a virtual maximum).

3.4. Progressive Persistence Diagrams 51

Figure 3.11 – Progressive persistence diagrams (saddle-maximum pairs, left to right)

for the electron density of the ethane-diol molecule (transparent isosurface), at a few

steps of the progressive computation. Maxima (denoting the atoms) are shown in the

domain with spheres, scaled by persistence and colored by lifetime (red to blue), while their

trajectory through the data hierarchy (Section 3.3.4) is shown with a curve (matching

color). Our progressive approach captures the heaviest atoms first: two oxygens (at 7%

of the computation time), then two carbons (10%) and finally the six hydrogens (32%).

52 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.12 – Computing the minimum-saddle persistence diagram from critical points.

Downwards monotonic paths are initiated at saddles to extract a list of critical point

triplets (part A, left), which forms a reduced topological representation of the data. This

reduced reprensentation is efficiently processed to produce the persistence diagram (part

B, right).

3.4.1 Persistence Diagram from Critical Points

The diagram D(f) of the extremum-saddle pairs of an input field f :

M → R is computed as follows. In short, critical points are used as

seeds for the computation of monotonic paths, specifically linking sad-

dles down to minima. This first step identifies merge events occur-

ring at saddle points (part A). The merge events are processed in a sec-

ond step (part B) to track the connected components of sub-level sets.

Similarly to previous topological techniques based on monotonic paths

[CLLR05, MDN12, CWSA16, SM17], our approach emulates the usage of

a Union-Find data structure with path compression [CLRS09] (tradition-

ally used for connectivity tracking) by propagating representants between

merged components. However our strategy is specialized for the produc-

tion of persistence diagrams, and only visits monotonic paths of minimal

length (i.e. integral lines).

Part A:

From data to reduced topological information

1) Critical points. First, critical points are extracted (Section 3.3).

2) Saddle monotonic paths. The second step consists in initiating mono-

tonic paths from each saddle s downwards, to identify at least one min-

imum for each connected component of sub-level set merging at s (Fig-

ure 3.12). For this, we initiate backward integral lines (see definition 2.24,

page 22), for each connected component of lower link Lk−(s) of each sad-

dle s. These integral lines are guaranteed to terminate in local minima of

f . Once a backward integral line L−(s) terminates in a local minimum m,

we back-propagate the vertex identifier of m and store it for each vertex

v ∈ L−(s). Then, m is called a representant of v, which is noted r(v) = {m}.
This strategy enables the early termination of an integral line L−(s1) when

3.4. Progressive Persistence Diagrams 53

it merges with another one, L−(s0), computed previously. In that case, we

back-propagate the representants reported by the merge vertex on L−(s1)

back to s1. At the end of this step, each saddle s is associated with the list

of representants collected by its backward integral lines. These denote lo-

cal minima which may have initially created the sub-level set components

merging at s.

Part B:

From reduced topological information to persistence diagrams

3) Critical triplets. For each saddle s, we create a list of critical triplets, in

the form (s, m0, m1), where m0 and m1 are representants of s and thus are

local minima. These are obtained by considering pairs among the set of

representants of s (computed previously). Note that in practice, for nearly

all saddles, this list consists of only one triplet, which describes the fact

that s separates two pits, m0 and m1. Note that in case of degenerate

saddles, multiple triplets emerge. For a degenerate saddle associated with

d representants (m0, . . . , md−1) in ascending values of f , we create the d− 1

triplets (s, m0, mi) with 0 < i < d.

4) Critical point pairing. This step iterates over the global list of critical

triplets (computed previously) in increasing order of saddle values. The

first triplet (s0, m0, m1) represents the earliest merge event between con-

nected components of sub-level sets of f . We introduce its simplified ver-

sion,
(
s0, r(m0), r(m1)

)
, which is initially equal to (s0, m0, m1) (initially, a

local minimum is itself its own representant). The highest of the two min-

ima, for instance m1, is then selected to create in D(f) the critical point

pair (s0, m1). Indeed, since s0 is the earliest merge event, m1 is guaranteed

to be the youngest minimum, according to the Elder rule [EH09], which

created a component of sub-level set merging with another one at s0. To

model the death of m1’s component (its merge with the component con-

taining m0), we update its representant as follows: r(m1) ← r(m0). Thus,

all future merging events involving m1 will re-direct to m0, as the compo-

nent born at m1 died by merging with that containing m0 (following the

Elder rule [EH09]). This simplification process is iterated over the (sorted)

global list of critical triplets. At each step, when constructing a simpli-

fied triplet
(
s, r(m0), r(m1)

)
, we recursively retrieve the representants of

r(m0) and r(m1), until we reach minima only representing themselves.

This guarantees that for each merge event of the sub-level set occurring at

a saddle s, we can efficiently retrieve the deepest minimum for each of the

components merging in s and therefore pair it adequately in D(f). Note

54 Chapter 3. A Progressive Approach to Scalar Field Topology

that the recursive update of representants is equivalent to the so-called

path compression of UF data structures [CLRS09]. Overall, iterating as de-

scribed above over the list of triplets results in populating D(f) with pairs

from bottom to top (by increasing death values).

3.4.2 Progressive Strategy

The above algorithm is divided in two parts (A and B, Section 3.4.1). In

particular, only part A can leverage our progressive representation of the

input data (Section 3.2), as part B processes reduced topological informa-

tion which has been abstracted from it and which therefore become com-

pletely independent. Thus, we focus our progressive strategy on part A.

This has a negligible impact on practical performance. In our experience,

part B represents less than 5% of the computation on average. Critical

points (Step 1) can be extracted progressively as described in Section 3.3.

For Step 2, we investigated multiple shortcut mechanisms (similar to Sec-

tion 3.3.2), to maintain the monotonic paths which remain valid from level

i to i + 1. However, from our experience, the overhead induced by this

global maintenance is not compensated by the acceleration it induces at

level i + 1, as monotonic paths are usually highly localized and thus al-

ready inexpensive to compute (less than 10% of the non-progressive com-

putation on average). Thus, our overall strategy for progressive persis-

tence diagrams simply consists, at each level i of the triangulation hierar-

chy H, in updating progressively the critical points (Section 3.3) and then

triggering the fast, remaining steps of persistence diagram computation

(2, 3, 4) as described in Section 3.4.1.

3.4.3 Parallelism

Our progressive algorithm for persistence diagram computation can be

easily parallelized. The initial critical point computation (Step 1, Sec-

tion 3.4.1) is parallelized as described in Section 3.3.3. Saddle integration

(Step 2, Section 3.4.1) can be trivially parallelized over saddles. However,

locks need to be used during representant back propagation (to guarantee

consistency over concurrent accesses by distinct monotonic paths). Critical

triplet generation (Step 3, Section 3.4.1) is also parallelized over saddles.

In Step 4 (critical point pairing Section 3.4.1), triplets are sorted in parallel

using the efficient GNU implementation [SK08]. The reminder of Step 4

is intrinsically sequential (as representants need to be updated in order

3.5. Results 55

of simplification), but in practice, this step represents less than 1% of the

sequential execution, which does not impact parallel efficiency.

3.5 Results

This section presents experimental results obtained on a computer

with two Xeon CPUs (3.0 GHz, 2x4 cores, 64GB of RAM), with

a C++ implementation of our algorithms (publicly available at:

https://github.com/julesvidal/progressive-scalar-topology), written as

modules for the Topology ToolKit (TTK) [TFL+
17]. The datasets are 3-

dimensional (at the exception of SeaSurfaceHeight, which is 2-dimensional)

and they have been downloaded from public repositories [Kla20, TTK20].

Appendix A provides a detailed list of these datasets, with information

about the considered scalar field and the related features of interest.

3.5.1 Progressive Data Representation

In this section, we study the practical relevance of our progressive data

representation (Section 3.2). First, we evaluate its qualitative relevance.

Our approach for persistence diagram computation (Section 3.4) progres-

sively refines an estimation of the output D(f), by efficiently updating

D(f i) at each new hierarchy level i. To evaluate quantitatively the rel-

evance of this estimation D(f i)
)
, we measure its similarity to the final,

exact result D(f) with the Wasserstein distance (Section 2.4).

For each level i, we measure the L2-Wasserstein distance

W2
(
D(f),D(f i)

)
. We normalize this distance by dividing it by

W2
(
D(f), ∅). Then, along the hierarchy H, this normalized distance

progresses from 1 to 0 for all datasets. Although this distance may in-

crease in theory from one level to the next, Figure 3.13 shows that it is

monotonically decreasing for our datasets.

This shows that in practice, the accuracy of our progressive outputs

indeed improves over time. This empirical convergence evaluation gives

a global picture of the quality of our progressive data representation. To

further evaluate its relevance, we report in Figure 3.14 the ratio of cap-

tured significant pairs in the diagram D(f i) as a function of the compu-

tation time. To evaluate this ratio, we select the significant pairs of D(f),

i.e. with a relative persistence greater than 0.1. Let np be the number

of such significant pairs (reported for each dataset in the legend of Fig-

ure 3.14, right, along with its percentage over the total number of pairs

https://github.com/julesvidal/progressive-scalar-topology
https://github.com/julesvidal/progressive-scalar-topology

56 Chapter 3. A Progressive Approach to Scalar Field Topology

in D(f), in parenthesis). Next, we select the np most persistent pairs in

D(f i) and divide the resulting number of selected pairs, noted ni
p ≤ np,

by np. In short, this indicator helps appreciate the number of significant

features captured by the hierarchy early in the computation. In particular,

Figure 3.14 shows that for most of the datasets, the number of captured

significant pairs matches the final estimation as of 10% of the computation

time. Figure 3.15 reports the average persistence of the ni
p significant pairs

in D(f i) as a function of the computation time, relatively to the average

persistence of the np significant pairs in D(f). This indicator helps ap-

preciate how well the significant pairs are captured in the data hierarchy.

In particular, this figure shows a clear global trend across datasets: the

persistence of the significant pairs tends to be underestimated early in the

computation and this estimation improves over time. These quantitative

observations (early capture of the significant pairs and underestimation

of persistence at the beginning of the computation) can be visually ob-

served in Figure 3.11, which shows that the significant pairs are captured

early in the data hierarchy (red and yellow pairs) but that their persistence

is indeed underestimated: the corresponding points are initially close to

the diagonal in the corresponding diagrams and then, they progressively

move away from it.

Figure 3.16 (top) presents additional convergence results on an exten-

sive list of real-life datasets: all the datasets from the Open Scientific Visu-

alization Dataset repository [Kla20] which fit in the main memory of our

experimental setup. This represents a set of 36 datasets (containing ac-

quired and simulated data). As discussed above, while the monotonic

Figure 3.13 – Empirical convergence of the normalized L2-Wasserstein distance. Each

curve plots the distance between the currently estimated diagram, D(f i), and the final,

exact diagram, D(f), as a function of the percentage of computation time (logarithmic

scale).

3.5. Results 57

Figure 3.14 – Ratio of captured significant pairs in D(f i) (cf. Section 3.5.1) as a

function of computation time (logarithmic scale).

Figure 3.15 – Average persistence of the significant pairs captured in D(f i) (cf. Sec-

tion 3.5.1), relatively to the same average in D(f), as a function of computation time

(logarithmic scale).

decrease of the L2-Wasserstein distance along the computation cannot be

guaranteed at a theoretical level, it can still be observed in practice. Note

however that for two examples (Bunny and Engine) a slight oscillation can

be observed in the early stages of the computation (between 1% and 2%

of the computation time). However, past this point, the distance keeps on

decreasing monotonically. Also, note that the convergence curves for all

datasets are indeed located between the curves of the two extreme syn-

thetic examples (MinMax and Random). The bottom part of Figure 3.16,

which reports the average distance for all datasets and its standard devia-

tion, further confirms the overall convergence tendency.

Next, we evaluate the computational relevance of our progressive data

representation, by reporting the number of Topologically Invariant (TI)

vertices (Section 3.2.3), for which no computation is needed. Table 3.1

shows that for real-world datasets, TI vertices represent 72% of the data

58 Chapter 3. A Progressive Approach to Scalar Field Topology

Table 3.1 – Statistics of our progressive data hierarchy. From left to right: number

of vertices, number of levels, memory overhead (over TTK), and number of topologically

invariant (TI) vertices (Section 3.2.3) in the data hierarchy. For real-world datasets (Ran-

dom and MinMax excluded), topologically invariant vertices represent 72% of the data

on average.

Dataset ∑i=h
i=0 |Mi

0| h M. (Mb) # old TIs # new TIs Total TIs % TIs

AT 931,110 9 242 93,145 509,504 602,649 64.7%

SeaSurfaceHeight (2D) 1,384,626 11 240 241,264 608,460 849,724 61.4%

EthaneDiol 2,057,388 9 527 227,376 1,371,537 1,598,913 77.7%

Hydrogen 2,413,532 8 626 245,541 1,528,607 1,774,148 73.5%

Isabel 3,605,604 9 970 274,590 1,329,116 1,603,706 44.5%

Combustion 4,378,386 9 1,149 421,208 2,445,192 2,866,400 65.5%

Boat 4,821,326 9 1,221 575,646 3,690,624 4,266,270 88.5%

Random 18,117,518 9 5,389 169,603 54 169,657 0.9%

MinMax 18,994,899 9 4,742 2,394,619 16,474,429 18,869,048 99.3%

Aneurism 19,240,277 9 4,841 2,367,190 16,027,209 18,394,399 95.6%

Foot 19,240,277 9 5,109 1,648,823 10,746,624 12,395,447 64.4%

Heptane 31,580,914 10 8,117 3,453,180 22,512,477 25,965,657 82.2%

on average, which indicates that efficient update mechanisms can indeed

be derived from our progressive data representation. This table also in-

cludes the memory overhead induced in progressive mode by the data

structures employed by our topological analysis algorithms (Section 2.2

and Section 2.3). In particular, this overhead is estimated by measuring

the memory footprint of all the data-structures which are present in our

progressive algorithms (Section 3.3 and Section 3.4) but not present in the

TTK implementation of the state-of-the-art methods. Thus, this column

depicts the additional memory needed by our approach in comparison

to the standard procedures available in TTK. In particular, this column

shows a linear evolution of this memory overhead with the size of the

data hierarchy. Note that our implementation is not optimized for mem-

ory usage and that important gains can be expected by re-engineering our

data structures at a low level.

3.5.2 Time Performance

The time complexity of our progressive algorithm for critical point ex-

traction is linear with the number of input vertices, which results in our

hierarchical setup in O(∑i=h
i=0 |Mi

0|) steps. For persistence diagrams, in

the worst possible configuration (degenerate saddles with systematic in-

tegral line forking), each saddle would generate monotonic paths which

would hit every minimum. This would yield ns× (nm− 1) critical triplets,

where ns and nm stand for the number of saddles and minima of f . This

3.5. Results 59

Figure 3.16 – Empirical convergence of the normalized L2-Wasserstein distance for an extensive list of datasets. Top:

each curve plots the distance between the currently estimated diagram, D(fi), and the final, exact diagram, D(f), as a

function of the percentage of computation times (logarithmic scale). The color map indicates the average distance, from

light brown (small distances, fast convergence) to light green (large distances, slow convergence). Extreme synthetic

cases are reported in red (dash: MinMax, solid: Random). Bottom: Average normalized L2-Wasserstein distance

(black curve) and standard deviation (green hull) for all real-life datasets (i.e. Random and MinMax excluded) as

a function of the percentage of computation time. Per-dataset curves are shown in the background (red: synthetic

extreme cases, grey: other datasets).

60 Chapter 3. A Progressive Approach to Scalar Field Topology

Table 3.2 – Sequential computation times (in seconds) of our algorithms for critical point

extraction (left) and persistence diagram computation (right). The columns TTK report

the run times of the default implementations provided by the Topology ToolKit [TFL+17].

The columns NP and Prog respectively report the timings for the non-progressive (di-

rectly initialized at the final hierarchy level) and progressive versions of our algorithms.

Critical Points Persistence Diagram

Dataset TTK [Ban70] NP Prog Speedup TTK [GFJT19] NP Prog Speedup

AT 4.41 0.34 0.25 1.36 0.66 0.31 0.24 1.29

SeaSurfaceHeight (2D) 0.92 0.16 0.26 0.62 0.70 0.24 0.40 0.60

EthaneDiol 9.56 0.73 0.42 1.74 1.45 0.68 0.41 1.66

Hydrogen 11.55 0.92 0.59 1.56 1.90 0.89 0.63 1.41

Isabel 17.98 1.40 1.43 0.98 2.76 1.50 1.62 0.93

Combustion 21.87 1.74 1.33 1.31 4.36 1.82 1.50 1.21

Boat 22.47 1.74 0.73 2.38 3.38 1.81 0.82 2.21

Random 113.12 13.99 21.04 0.66 74.39 25.65 34.40 0.75

MinMax 82.23 6.94 1.56 4.45 14.68 7.00 1.64 4.27

Aneurism 84.03 7.39 2.19 3.37 12.85 8.03 3.43 2.34

Foot 100.58 9.26 8.13 1.14 18.20 12.18 12.06 1.01

Heptane 149.30 12.43 6.46 1.92 19.45 13.22 8.16 1.62

would yield ns × (nm − 1) merge events for the critical pairing step, each

with an amortized complexity of O
(
α(nm)

)
, where α is the inverse of the

Ackermann function. However, such configurations are extremely rare in

practice and most saddles only yield one triplet, resulting in an overall

practical time complexity of O
(

∑i=h
i=0(|Mi

1|+ ni
s log ni

s + ni
sα(ni

m))
)

steps,

also accounting for the sorting of triplets.

Table 3.2 reports computation times (sequential run) for the default

algorithms (Section 2.2) [Ban70], [GFJT19] available in TTK [TFL+
17] and

the non-progressive and progressive versions of our algorithms. Non-

progressive methods (TTK and NP columns) compute from scratch only

the last hierarchy level h directly. We only report the run times of TTK as

an indicative baseline as the differences in triangulation implementations

already induce alone important run time variations (TTK emulates im-

plicitly triangulations for regular grids at query time, while our implemen-

tation stores the explicit list of link edges for each vertex, Section 3.3.1).

Interestingly, the Speedup columns show that, in addition to their abil-

ity to provide continuous visual feedback, our progressive algorithms are

also faster than their non-progressive versions (on average, 1.8 times faster

for critical points, 1.6 for persistence diagrams). These speedups confirm

that the overhead of processing an entire hierarchy (∑i=h
i=0 |Mi

0| vertices

in progressive mode, instead of |Mh
0| in non-progressive mode) and of

detecting TI vertices is largely compensated by the gains these vertices

provide. Specifically, old topologically invariant vertices enable efficient

updates between levels (Section 3.3.2), which allows to avoid losing time

3.5. Results 61

Table 3.3 – Parallel computation times (in seconds, 8 cores) of our algorithms for critical

point extraction (left) and persistence diagram computation (right). The columns TTK

report the run times of the default implementations provided by the Topology ToolKit

[TFL+17]. The columns NP and Prog respectively report the timings for the non-

progressive (directly initialized at the final hierarchy level) and progressive versions of

our algorithms.

Critical Points Persistence Diagram

Dataset TTK [Ban70] NP Prog Speedup TTK [GFJT19] NP Prog Speedup

AT 0.54 0.06 0.05 1.20 0.29 0.06 0.06 1.00

SeaSurfaceHeight (2D) 0.15 0.04 0.05 0.80 0.28 0.07 0.11 0.64

EthaneDiol 1.18 0.12 0.07 1.71 0.42 0.13 0.11 1.18

Hydrogen 1.41 0.14 0.12 1.17 0.97 0.18 0.19 0.95

Isabel 2.11 0.21 0.21 1.00 0.89 0.25 0.29 0.86

Combustion 2.54 0.25 0.21 1.19 0.82 0.29 0.30 0.97

Boat 2.71 0.26 0.15 1.73 0.81 0.30 0.24 1.25

Random 11.46 1.82 2.67 0.68 19.10 8.96 10.89 0.82

MinMax 9.87 1.25 0.43 2.91 3.24 1.39 0.69 2.01

Aneurism 10.19 1.14 0.50 2.28 4.08 1.89 1.48 1.28

Foot 11.30 1.93 1.75 1.10 5.39 3.37 3.29 1.02

Heptane 17.72 2.38 1.51 1.58 5.74 2.79 2.50 1.12

in comparison to a non-progressive approach. In contrast, new topolog-

ically invariant vertices enable actual shortcuts in the computation (Sec-

tion 3.3.2), which allows to gain time in comparison to a non-progressive

approach. Note that the datasets with the most (resp. least) TI vertices

(Table 3.1) are also those for which the largest (resp. smallest) speedups

are obtained, confirming the importance of TI vertices in the computation.

Table 3.3 details the performance of the shared-memory parallelization

of our progressive algorithms, using OpenMP [DM98], again in compar-

ison to the default algorithms (Section 2.2) [Ban70], [GFJT19] available in

TTK [TFL+
17] and to the non-progressive version of our algorithms. As

mentioned in Section 3.3.3, critical point extraction can be trivially paral-

lelized over vertices, for each of the four steps of our algorithm, resulting

in an average parallel efficiency of 66%. The persistence diagram compu-

tation results in a more modest efficiency (45%) as monotonic path com-

putations are subject to locks, in addition to be possibly imbalanced.

3.5.3 Stress Cases

Our experiments include two synthetic datasets, whose purpose is to il-

lustrate the most and the least favorable configurations for our approach,

to better appreciate the dependence of our algorithms to their inputs. The

MinMax dataset is an elevation field which only contains one global mini-

mum and one global maximum. It exhibits therefore a lot of regularity. In

62 Chapter 3. A Progressive Approach to Scalar Field Topology

contrast, the Random dataset assigns a random value to each vertex. Thus,

no local coherency can be expected between consecutive levels in the data

hierarchy (which is an important hypothesis in our framework).

Table 3.1 confirms the best/worst case aspect of these datasets, as they

respectively maximize and minimize the ratio of TI vertices: MinMax has

nearly only TI vertices (99.3%) while Random has nearly none (0.9%).

Table 3.2 confirms, as can be expected, that these two datasets also

maximize and minimize the speedup induced by our progressive ap-

proach. In particular, our progressive algorithms report a speedup greater

than 4 over their non-progressive versions for the MinMax dataset. This

further confirms the observation made in Section 3.5.2 that processing an

entire data hierarchy with the acceleration induced by TI vertices can in-

deed be faster than computing criticality from scratch at the final hierarchy

level only (in particular, up to 4 times). In contrast, this table also shows

that in the worst possible case (Random, nearly no TI vertices), the process-

ing of the entire hierarchy can be up to 50% slower (for critical points, 30%

for persistence diagrams) than computing in non-progressive mode at the

final hierarchy level only. All the other datasets exhibit speedups included

within these lower (Random) and upper (MinMax) bounds (on average 1.8

for critical points, 1.6 for persistence diagrams).

In terms of quality, the best/worst case aspect of MinMax and Random

is also illustrated in Figs. 3.13, 3.14 and 3.15, where MinMax converges

immediately, while Random describes the worst case (slow convergence,

slow and inaccurate capture of the significant pairs). In these curves, the

other datasets cover the span of possible behaviors between these two

extreme cases.

3.5.4 Progressive Topological Visualization and Analysis

This section discusses the progressive visualizations and analyses enabled

by our approach. Figure 3.1 presents a typical example of progressive

persistence diagram computation on the electron density of the adenine-

thymine (AT) molecular system. In this figure, the estimated diagrams

progressively capture the features in a meaningful way, as the heaviest

atoms are captured first and the lighest ones last. In particular, in the di-

agrams, the introduced points progressively stand out from the diagonal

towards their final locations. As of 33% of the computation, the diagram

is complete and its accuracy is further improved over time. This illustrates

the capacity of our approach to deliver relevant previews of the topolog-

3.5. Results 63

Figure 3.17 – Progressive persistence diagrams (saddle-maximum pairs, from left to right

and top to bottom) of the CT scan of a foot (top, leftmost: isosurface), at a few steps of

the computation. A merge tree based segmentation (colored regions, computed with TTK

[TFL+17]) reveals the 5 most persistence structures in the data. Colored spheres show

the 5 most persistent maxima reported by the current diagram estimation, illustrating a

correct capture of the main structures early in the computation (as of 3% of computation).

ical features of a dataset and to improve them progressively. Figure 3.11

further illustrates our estimation of the lifetime of extrema and their tra-

jectory in the data hierarchy. There, as one progresses down the hierarchy,

the prominent maxima are progressively captured and they quickly stabi-

lize in the vicinity of their final location. Figure 3.17 illustrates progressive

persistence diagrams for an acquired dataset. There, a merge tree based

segmentation (computed with TTK [TFL+
17]) is shown in the background.

It represents the regions of the five most persistent leaf arcs of the merge

tree. The five most persistent maxima reported by the current diagram

estimation are reported with spheres. As of 3% of the computation, these

maxima are correctly assigned to the final structures (one per toe), while

their positional accuracy is further improved with time. Overall, the dia-

grams (bottom) capture the main features early in the computation, while

smaller features and noise are progressively captured as the computation

unfolds.

Figure 3.18 presents a gallery of progressive persistence diagrams for

several datasets. The diagram estimations capture well the overall shape

of the final, exact output (i.e. the number and salience of its main fea-

tures) and are progressively refined over time. This gallery complements

the quantitative analysis reported in Figs. 3.13, 3.14, 3.15 and confirms

64 Chapter 3. A Progressive Approach to Scalar Field Topology

Figure 3.18 – Progressive persistence diagrams (saddle-maximum pairs) for several data sets (combustion, heptane,

boat, hydrogen, aneurism), at a few steps of the computation. Persistent maxima are represented with spheres in

the domain (scaled by persistence). The progressive diagrams capture well the overall shape (number and salience of

features) of the final, exact output (100%) early in the computation and refine it over time.

3.6. Limitations and Discussion 65

visually the interest of our progressive representations, which provide rel-

evant previews of the topological features present in a dataset.

We used the TTK library [TFL+
17] to integrate our implementa-

tion within the popular visualization system ParaView [AGL05], as

shown in the companion video (featured on the Github repository:

https://github.com/julesvidal/progressive-scalar-topology). This video

illustrates the progressive updates of our topological previews within in-

teractive times, and further demonstrates their interest for interactive vi-

sualization environments.

3.6 Limitations and Discussion

Our progressive persistence diagrams tend in practice to capture the main

features first. However, this cannot be guaranteed theoretically. For in-

stance, sharp spikes in the data (e.g. high amplitude and high frequency

noise) can yield persistent maxima only at the last levels of the hierarchy,

as illustrated in Figure 3.18 where the global maximum of the Hydrogen

dataset (fourth row) belongs to a sharp spike in the center of the data (as

also reported by the quantitative plots Figs. 3.13 and 3.15). This behav-

ior prevents the definition of theoretical error bounds on our estimations.

However, the empirical monotonic decrease of the Wasserstein distance

(Figure 3.13) indicates that our progressive representations actually pro-

vide reliable estimations, as confirmed by the indicators of Figs. 3.14, 3.15,

where the real-world datasets cover the span of possible behaviors be-

tween the two stress cases (MinMax, Random). This can be explained by

the fact that, in practice, persistent pairs often coincide with large features

in the domain, which get captured early in the data hierarchy.

Although we described our approach generically, we focused in this

chapter on an efficient implementation of edge-nested triangulations for

regular grids (Section 3.2.2). The generalization of our approach to generic

domains requires to investigate triangulation subdivision schemes. Sev-

eral of them seem compliant with the notion of edge-nested triangulation

(Section 3.2.1), such as the Loop subdivision [Loo87] and the red trian-

gulation refinement [H. 42, R.E83, J. 95, S. 95]. However, efficiently trans-

forming an arbitrary triangulation into a triangulation which admits an

edge-nested hierarchy is an orthogonal question which we leave for fu-

ture work. Similarly, the reliable tracking of extrema through the hierar-

chy (for lifetime estimation, Section 3.3.4) relates to another orthogonal

problem, for which computationally expensive optimizations may need to

https://github.com/julesvidal/progressive-scalar-topology

66 Chapter 3. A Progressive Approach to Scalar Field Topology

be considered. Our algorithms complete a given hierarchical level before

moving on to the next one. This results in increasing update times as the

computation converges. In the future, finer update strategies will be con-

sidered, by considering adaptive, feature-centric, variable level-of-detail

refinement methods. Finally, our algorithm for persistence diagrams does

not support saddle-saddle pairs in 3D. However, from our experience, the

interpretation of these structures is not obvious in the applications.

Our progressive scheme seems to be particularly efficient for algo-

rithms which visit all the vertices of the domain (e.g. critical point extrac-

tion), but less beneficial for inexpensive operations which only visit small

portions of the data (e.g. integral line computation, Section 3.4.2). This is

a lesson learned from our experiments which could serve as guideline for

future extensions to other topological analyis algorithms. Also, there is

a trade off between the benefits of the progressive scheme and its cost in

terms of memory usage. Future work is needed to improve the memory

footprint of our approach by optimizing our data structures at a low level.

For instance, for triangulations of regular grids and real-life tetrahedral

meshes, the maximum number of neighbors around a vertex is typically

small, which enables the encoding of local neighbor identifiers with very

few bits, instead of full integers (as done in our current implementation).

Other variables (such as the polarity, currently stored with a boolean for

each neighbor) could also benefit from a more compact bit representation.

3.7 Summary

This chapter introduced an approach for the progressive topological anal-

ysis of scalar data. Our work is based on a hierarchical representation of

the input data and the fast identification of topologically invariant vertices,

for which we showed that no computation was required as they were

introduced in the hierarchy. This enables the definition of efficient coarse-

to-fine topological algorithms, capable of providing interpretable outputs

upon interruption requests, and of progressively refining them otherwise

until the final, exact output. We instantiated our approach with two ex-

amples of topological algorithms (critical point extraction and persistence

diagram computation), which leverage efficient update mechanisms for

ordinary vertices and avoid computation for the topologically invariant

ones. For real-life datasets, our algorithms tend to first capture the most

important features of the data and to progressively refine their estimations

with time. This is confirmed quantitatively with the empirical convergence

3.7. Summary 67

of the Wasserstein distance to the final, exact output, which is monotoni-

cally decreasing. More computation time indeed results in more accuracy.

Our experiments also reveal that our progressive computations even turn

out to be faster overall than non-progressive algorithms and that they can

be further accelerated with shared-memory parallelism. We showed the

interest of our approach for interactive data exploration, where our algo-

rithms provide progressive previews, continuously refined over time, of

the topological features found in a dataset.

4Approximation of Persistence

Diagrams with Guarantees

Contents

Our contribution in one image . 71

4.1 Overview . 72

4.2 Topology Approximation . 72

4.2.1 Hierarchy Processing . 73

4.2.2 Vertex Folding . 74

4.2.3 Bottleneck Error Control . 76

4.2.4 Monotony offsets . 77

4.2.5 Parallelism . 79

4.2.6 Uncertainty . 79

4.3 Results . 80

4.3.1 Time Performance . 80

4.3.2 Approximation Accuracy 83

4.3.3 Qualitative Analysis . 85

4.4 Limitations and Discussion . 87

4.5 Summary . 88

69

70 Chapter 4. Approximation of Persistence Diagrams with Guarantees

This chapter presents an algorithm for the efficient approximation of the

saddle-extremum persistence diagram of a scalar field. In the previ-

ous chapter, we introduced a fast algorithm for such an approximation, by

interrupting our progressive computation framework (Section 3.4). How-

ever, no theoretical guarantee was provided regarding its approximation

quality. In this chapter, we revisit our progressive framework and we

introduce in contrast a novel approximation algorithm, with a user con-

trolled approximation error, specifically, on the Bottleneck distance to the

exact solution. Our approach is based on a hierarchical representation

of the input data, and relies on local simplifications of the scalar field

to accelerate the computation, while maintaining a controlled bound on

the output error. The locality of our approach enables further speedups

thanks to shared memory parallelism. Experiments conducted on real life

datasets show that for a mild error tolerance (5% relative Bottleneck dis-

tance), our approach improves runtime performance by 18% on average

(and up to 48% on large, noisy datasets) in comparison to standard, exact,

publicly available implementations. In addition to the strong guarantees

on its approximation error, we show that our algorithm also provides in

practice outputs which are on average 5 times more accurate (in terms of

the L2-Wasserstein distance) than a naive approximation baseline. We il-

lustrate the utility of our approach for interactive data exploration and we

document visualization strategies for conveying the uncertainty related to

our approximations.

The work presented in this chapter has been published as part of the

proceedings of the IEEE Symposium on Large Data Analysis and Visual-

ization in 2021 [VT21]. It is replicable, using the code and data available

at https://github.com/julesvidal/persistence-diagram-approximation. It

will soon be integrated into the Topology ToolKit [TFL+
17].

https://github.com/julesvidal/persistence-diagram-approximation

71

Our contribution in one image

Figure 4.1 – Approximations of persistence diagrams for a CT scan of a backpack, with different Bottleneck approximation

errors. High persistence features correspond to high density objects present in the bag (leftmost, bottom). In this example,

our controlled approximation reduces computation time by 70% for an error tolerance of 10%. Our algorithm also provides

an approximation of the scalar field that is precise around persistent features (top, volume rendering of the approximated

fields) and deteriorated elsewhere (bottom, isocontours capturing the cloth of the bag). For each approximation, the thirty most

persistent maxima are represented by spheres (top views) which correctly capture the features of the data. The uncertainty

resulting from our approximation is visualized in the diagram with (i) colored squares, which bound the correct location of

certain features (which are guaranteed to be present in the exact result). These are located outside a (ii) red band (in the

vicinity of the diagonal), which denotes features which might not exist in the exact diagram. Our approximations precisely

capture the high persistence features of the data (out of the red band, black numbers) and collect significantly less noisy features

(red numbers, red band) than the exact result (numbers in parentheses).

72 Chapter 4. Approximation of Persistence Diagrams with Guarantees

4.1 Overview

Figure 4.2 provides an overview of our approach, which revisits the pro-

gressive framework of Chapter 3 to derive a fast approximation algorithm

with strong guarantees. First, we exploit the same multiresolution hi-

erarchy of the input data (Section 3.2) to quickly update, down to the

finest hierarchy level, the polarity of each vertex (used to identify criti-

cal points). This step is described in Section 4.2.1. During the hierarchy

traversal, in contrast to the original approach, we artificially increase the

number of topologically invariant vertices (Section 3.2.3) in order to signifi-

cantly speedup the computation, through a procedure called vertex folding,

which artificially degrades the input data. This step is described in Sec-

tion 4.2.2. The data degradation induced by the vertex folding procedure

is precisely controlled in the process, to provide strong guarantees on the

approximation error of the output. This is described in Section 4.2.3. Fi-

nally, we describe in Section 4.2.4 how to handle degenerate configurations

such as flat plateaus. Overall, the approach described in this chapter in-

volves three major differences to the progressive framework presented in

Chapter 3, which are detailed in the rest of this section:

1. Our new approximation algorithm is not progressive: it does not gen-

erate a sequence of progressively refined outputs. Instead, our traversal

of the multiresolution hierarchy only updates a minimal amount of in-

formation (the vertex polarity). The criticality of each vertex is only

evaluated after the hierarchy traversal is finished (while the criticality is

updated at each hierarchy level in Chapter 3).

2. Our approximation approach is based on a multiresolution degradation

of the input data, which accelerates the overall computation, while main-

taining a controlled output error.

3. Overall, in contrast to the progressively interrupted results presented in

Chapter 3, our approximated output is provided with strong guaran-

tees on its approximation error (in terms of relative Bottleneck distance)

and with a significantly improved practical accuracy (in terms of the L2

Wasserstein distance).

4.2 Topology Approximation

This section presents our novel approach for the controlled approximation

of an extremum/saddle persistence diagram. In the following, we focus

4.2. Topology Approximation 73

Figure 4.2 – Overview of our approach. First, the traversal of the hierarchy (a) enables the

efficient detection of the vertices (blue spheres) that are not topologically invariant (TI),

and for which the criticality must be computed. Non-monotonic vertices (red spheres) can

be folded (transparent red spheres) during the traversal, i.e. reinterpolated to artificially

increase the number of TI vertices. Second (b), the criticality of all non-TI vertices detected

in the first step is computed, to identify the critical points of the approximated field

(spheres, cyan: maxima, green: saddles, beige: minimum). Third, the saddle points are

used to seed integral lines ending at extrema (c), from which the persistence diagram is

deduced (d).

on the case of minimum/1-saddle pairs ((d− 1)-saddle/maximum pairs

being treated symmetrically). Our method is based on folding operations

for non-monotonic vertices. As the hierarchy is processed, non-monotonic

vertices are inserted at each level. When a non-monotonic vertex is in-

serted in the hierarchy on a new edge, we can purposely decide to reinter-

polate this vertex to enforce its monotony, and hence accelerate the com-

putation of its criticality. The resulting error is the difference between the

real scalar value at this vertex and the interpolated value, which bounds

the Bottleneck error on the diagram estimation, as detailed next.

4.2.1 Hierarchy Processing

This section presents our computation strategy in the case where the ap-

proximation error ε is set to 0 (i.e. exact computations). Given an input

edge-nested triangulation hierarchy H = {M0,M1, . . . ,Mh}, persistence

diagrams are evaluated in three steps. First, the hierarchy is completely

74 Chapter 4. Approximation of Persistence Diagrams with Guarantees

traversed, from the coarsest levelM0 to the finestMh, to efficiently detect

topologically invariant vertices, for which the criticality can be efficiently

estimated in a second step, at the last level of the hierarchy only (Mh).

Third, the persistence diagram is computed from the saddle points iden-

tified at the second step.

1) Hierarchy traversal: In order to identify topologically invariant vertices,

we compute the link polarity (Section 3.2.3) of the vertices for each level

of the hierarchy. The link polarity of a vertex v is encoded in our setting

as an array of bits, one per neighbor n of v, denoting whether n is higher

or lower than v. The size of the link polarity is the same for each level of

H (Section 3.2.3): at most 6 bits in 2D and 14 bits in 3D. At each level i,

the polarity of new vertices is initialized, while the polarity of old vertices

is updated to account for the insertion of non-monotonic vertices. The de-

tection of non-monotonic vertices enables the fast identification of regular

points: new topologically invariant vertices are known to be regular points

of f i, and old topologically invariant vertices keep the same criticality at

level i than at level i − 1 (Section 3.2.3). We leverage these informations

to avoid the explicit computation of the criticality for some of the vertices.

As a new topologically invariant vertex v is identified inMi, it is flagged

as a regular vertex. If its link polarity is not changed in the remaining

levels (e.g. v is topologically invariant through the rest of the hierarchy),

v is guaranteed to be a regular vertex of Mh and no further computation

will be needed for it.

2) Critical points: At Mh, we compute explicitly the criticality of the

vertices which are not yet guaranteed to be regular (as described above).

The criticality of a vertex v is computed by enumerating the connected

components of Lk+(v) and Lk−(v) (Section 2.2).

3) Persistence diagram: The minimum/1-saddle persistence diagram is

deduced from the critical points, as presented in steps 2, 3 and 4 of Sec-

tion 3.4.1.

4.2.2 Vertex Folding

This section describes the variations of the above strategy for the case

where the user-controlled approximation error ε is not zero in order to

decrease the computational cost. Specifically, we present a strategy to

artificially increase the number of topologically invariant vertices during

the hierarchy traversal (step 1), which will consequently result in skipping

4.2. Topology Approximation 75

Figure 4.3 – Traversal of the hierarchy and identification of topological invariants vertices

for two different folding threshold (top: ε = 0, bottom ε = 0.3). The numbers denote the

values of the approximated scalar field f̂ . Red squares indicate the non-monotonic new

vertices, whose folding error δε is labelled in red. At the top, no vertex is folded and no

approximation is made on the scalar field (i.e. f̂ = f). It results in a high number of

non-monotonic vertices and a low number of topologically invariant old and new vertices

(respectively blue and green squares). In contrast, a folding threshold ε = 0.3 is applied

at the bottom. Every non-monotonic vertex n with a folding error δ(n) ≤ 8 gets folded

(yellow hats). This reduces the number of non-monotonic vertices and more than doubles

the number of TI vertices (blue and green squares) of the full precision approach.

the estimation of vertex criticality (step 2) for a larger number of vertices

(hence the overall speedup).

A new vertex n, appearing at a level i of the hierarchy, is inserted

at the center of an old edge (o0, o1) of Mi−1 (Section 3.2.1). Assuming

that f (o0) < f (o1) < f (n), n is a non-monotonic vertex and impacts the

link polarity of o1. The apparition of such vertices reduces the overall

performance as these will trigger explicit criticality computations in step

2. To reduce the number of non-monotonic vertices inserted in Mi, we

can choose to reinterpolate a non-monotonic vertex n between its two new

neighbors to enforce its monotony. The method that we use to decide

which vertex to reinterpolate is detailed in Section 4.2.3. We note the

resulting monotonic vertex n̂ and say that this vertex is folded. We define

76 Chapter 4. Approximation of Persistence Diagrams with Guarantees

its new approximated value f̂ (n̂) as the interpolation of the approximated

values of its two old neighbors: f̂ (n̂) =
(

f̂ (o0) + f̂ (o1)
)

/2. The values

f̂ (o0) and f̂ (o1) are themselves either the result of a linear interpolation

if o0 or o1 have been previously folded. Otherwise, they are equal to f (o0)

and f (o1).

Formally, we build a sequence { f̂ 0, f̂ 1, . . . , f̂ h} of PL scalar fields de-

fined on each hierarchy level. The sequence is defined recursively:

1. f̂ 0 = f 0

2. For each old vertex o ofMi, f̂ i(o) = f̂ i−1(o)

3. For each new vertex n ofMi that is not folded, f̂ i(n) = f i(n)

4. For each folded new vertex n̂ ofMi on the edge (o0, o1),

f̂ i(n̂) =
f̂ i−1(o0) + f̂ i−1(o1)

2
We note F i the set of folded vertices at level i (with F i ⊂ Mi

0). By

construction, folded new vertices are monotonic. Figure 4.3 illustrates how

a higher amount of folded vertices at level i implies a higher number of

topologically invariant vertices identified on Mi. In particular, if all non-

monotonic vertices are folded at level i, all vertices ofMi are topologically

invariant.

4.2.3 Bottleneck Error Control

Computing persistence diagrams with vertex folding results in approxima-

tions of the exact result D(f), given by D(f̂) (diagram of the approximated

field f̂). Then the resulting approximation error (in terms of Bottleneck

distance) is given by [CEH05]: W∞
(
D(f̂),D(f)

)
≤ ‖ f̂ − f ‖∞ , which is

rather easy to estimate. For each new vertex n inserted at level i of the

hierarchy on the edge (o0, o1), we define its folding error δ(n) as the differ-

ence between its original scalar value and its reinterpolation value at its

level of insertion: δ(n) =
∣∣∣(f̂ i(o0) + f̂ i(o1)

)
/2− f (n)

∣∣∣. Then, we have:

‖ f̂ − f ‖∞ = max
n̂∈F h

δ(n̂) = max
n̂∈F h
| f̂ (n̂)− f (n̂)| (4.1)

In the light of these observations, we use the following folding strategy

as we process the hierarchy. Given a target approximation error ε, the hier-

archy is processed as described in Section 4.2.1, except that vertex polarity

is estimated from the approximated field f̂ . For each level i, we choose to

fold non-monotonic vertices n with an error δ(n) < ε. Monotonic vertices

or non-monotonic vertices with a higher folding error get added into the

4.2. Topology Approximation 77

hierarchy without being reinterpolated. Let f̂ε : M → R be the final field

approximation (after the hierarchy traversal is completed), given the target

approximation error ε. Then it is clear that ∀v ∈M, δ(v) ≤ ε. Thus:

W∞
(
D(f̂ε),D(f)

)
≤ ‖ f̂ε − f ‖∞ ≤ ε

In the remainder, ε is given as a percentage of the data range (ε = 0 is the

exact computation, while ε = 1 = 100% folds all non-monotonic vertices).

The range of the scalar field also corresponds to the worst L∞ error we

can make on the approximated field, which bounds the worst Bottleneck

error that our approach can yield. Consequently, we use the expression

of ε as a percentage of the scalar range r = max f −min f to indicate the

level of our approximation, relatively to this worst Bottleneck error. As

such, ε = 0.05 = 5% corresponds to a relative maximal error of 5% on the

Bottleneck distance to the exact result.

4.2.4 Monotony offsets

We now discuss how to handle degenerate flat plateaus, which become

more frequent given our vertex folding strategy. The input scalar field f

is injective on the vertices of M (Section 4.1). This is enforced in practice

with an offset field O : M0 → N, typically corresponding for each vertex

to its offset in memory (Figure 4.4a). O is then used to disambiguate

vertices with identical scalar values.

In theory, a folded vertex n̂ is guaranteed to be monotonic. However in

practice, if δ(n̂) falls below the precision of the data type used to encode

the scalar field, a flat plateau emerges. This occurs frequently for instance

when the input data is expressed with integers. Then, given a new folded

vertex n̂ inserted on an edge (o0, o1), we may have: f̂ (n̂) = f̂ (o0), which

means n̂ and o0 will be disambiguated in the algorithm by their offset O.

However, this can introduce undesired monotony changes (Figure 4.4b,

red squares).

To guarantee the monotony of folded vertices, we introduce a monotony

offset on each vertex v, noted M(v), which is modified when the vertex gets

folded. The purpose of the monotony offset M is to take over the regular

offset O if it contradicts the monotony of newly folded vertices. Given

a new folded vertex n̂ inserted on an edge (o0, o1) at level i, that is non-

monotonic with respect to o0 (i.e. f̂ (n̂) < f̂ (o0) < f̂ (o1) or f̂ (n̂) > f̂ (o0) >

78 Chapter 4. Approximation of Persistence Diagrams with Guarantees

Figure 4.4 – Monotony offsets on a toy example of an integer field f (a: black numbers)

defined on a 2D grid. The injectivity of f is guaranteed by the offset field O (a: blue

numbers). On the bottom row (b), the matrices indicate for each vertex the values of the

fields f , f̂ , O and M. As the hierarchy is processed (b), some vertices get folded (red and

green squares) according to a given error threshold. Due to the precision of the field (here

integer precision), their interpolated value (numbers on the right) might be identical

to that of an old neighbor. In some cases (red squares), the folding actually entails a

monotony change as the offset field O (blue numbers) provides the wrong order relation

between neighbor vertices. If such an event occurs, the monotony offset of the folded

vertex is updated (red numbers) to enforce monotony. Green squares denote folding cases

where O does not contradict the folding monotony. At the finest resolution (b, rightmost),

this results in plateaus (bottom row of the grid) where the injectivity of f̂ is guaranteed

and where the monotony is correctly enforced.

f̂ (o1)), we set:

M(n̂) =



M(o0)− 2h−i if f̂ (n̂) < f̂ (o0) < f̂ (o1)

and O(n̂) > O(o0)

M(o0) + 2h−i if f̂ (n̂) < f̂ (o0) < f̂ (o1)

and O(n̂) < O(o0)

M(o0) else

The monotony offset is initially set to zero for all new vertices and

modified only in case of vertex folding. Then, the field M explicitly en-

codes the monotony of newly folded vertices (Figure 4.4). The monotony

offsets are used to disambiguate the comparison of two vertices of identi-

cal approximated scalar value in the rest of the approach (criticality esti-

mation, integral lines, etc).

4.2. Topology Approximation 79

4.2.5 Parallelism

Our approach can be easily parallelized using shared-memory parallelism.

The first step of our approach, the traversal of the hierarchy, can be triv-

ially parallelized on the vertices, as all operations are local to a vertex.

However the hierarchy must be processed in sequential, which implies

synchronization between the different levels. The computation of the crit-

icality for non topologically invariant vertices is also completely parallel.

The computation of the persistence diagram from the critical points can be

parallelized on the saddle points, however locks are necessary for the par-

allel computation of integral lines, in order to back-propagate the indices

of found extrema. The saddle points are sorted in parallel, using the GNU

implementation [SK08]. Finally, processing the merge events represented

by the triplets is a sequential task, but represents only a fraction of the

total sequential computation time (less that 1% in practice).

4.2.6 Uncertainty

By construction, our approach induces a Bottleneck error of ε, which corre-

sponds to a maximum mismatch of ε between the pairs of D(f̂ε) and these

of D(f). This means that some approximated persistence pairs (with a

persistence below 2ε) may not be present in the exact diagram (as they

may be matched to the diagonal at a cost lower than ε). We call these pairs

uncertain. In contrast, the approximated pairs with a persistence beyond

2ε will certainly be present in the exact diagram, and their exact location

is bounded within a square of side 2ε. We call these pairs certain. Thus,

we can visually convey the level of uncertainty of our approximations di-

rectly in the persistence diagrams (Figure 4.5). For this, we use a red band

to indicate uncertain pairs, and we draw the bounding squares for certain

pairs (Section 4.3.3).

Figure 4.5 – Approximation uncertainty visualization. The diagram at ε = 10% (a.,

right) exhibits one uncertain pair within the red band, which is absent from the exact

result (a., left). Squares bound the correct location of certain pairs (b., transparent: exact

pairs).

80 Chapter 4. Approximation of Persistence Diagrams with Guarantees

Table 4.1 – Increase of the number of topologically invariant (TI) vertices for different

levels of approximation. For real-world datasets (MinMax and Random excluded), the

average proportion of TI vertices rises from 70% for the full precision approach (i.e. ε = 0)

to 94% for a relative Bottleneck error of 5% (ε = 0.05).

Dataset ∑h
i=0 |Mh

0| % TI

ε = 0 ε = 0.01 ε = 0.05 ε = 0.1

At 931,102 64.7 95.3 96.1 96.3

SeaSurfaceHeight 1,384,636 61.4 90.8 96.7 98.3

Ethanediol 2,057,380 77.7 97.4 97.6 97.6

Hydrogen 2,413,516 73.5 97.8 97.3 97.4

Isabel 3,605,596 44.5 80.8 91.6 93.5

Combustion 4,378,378 65.5 89.6 96.3 97.3

Boat 4,821,318 88.5 96.9 97.0 97.2

MinMax 18,994,891 99.3 99.5 99.5 99.5

Aneurism 19,240,269 95.6 96.1 97.4 98.2

Foot 19,240,269 64.4 66.6 73.7 86.9

Heptane 31,580,914 82.2 96.4 98.2 98.7

Random 18,117,510 0.9 0.9 1.0 1.1

Backpack 111,929,613 39.1 77.2 94.7 97.7

4.3 Results

This section presents experimental results obtained on a variety of

datasets, available on public repositories [Kla20, TTK20]. We refer to Ap-

pendix A for an extensive list. We implemented our approach in C++, as

modules for the Topology ToolKit (TTK) [TFL+
17, BMBF+

19]. The exper-

iments were carried out on a desktop computer with two Xeon CPUs (3.0

GHz, 2×4 cores) and 64 GB of RAM.

4.3.1 Time Performance

The time complexity of this approach is similar to the complexity of the

non-interruped progressive algorithm presented in Chapter 3. The first

two steps of our approach, that amount to the hierarchy traversal and the

computation of critical points, have a linear complexity in the number of

vertices: O(∑i=h
i=0 |Mi

0|). The third step, to compute the saddle-extremum

persistence from the critical points, is identical to the progressive approach

(Section 3.4), except that we compute the persistence diagram exclusively

on the last, finest level of the hierarchy. It has a practical time complexity

(Section 3.5.2) of O
(
|Mh

1| + ns log ns + nsα(nm)
)
, where α stands for the

inverse of the Ackermann function, and ns and nm respectively denote the

number of saddle points and extrema.

Table 4.1 reports the number of TI vertices for all datasets, for various

4.3. Results 81

Table 4.2 – Sequential computation times (in seconds) of our approach for the approxi-

mation of persistence diagram, for different approximation errors. The column Default

reports the run time of the default approach in the Topology ToolKit [GFJT19]. The last

column indicates the speedup of our approach with an approximation error of 5%, against

the fastest of the two exact methods (left). Bold numbers indicate the smallest ε providing

a speedup over reference approaches.

Dataset Default[GFJT19] Progressive (Section 3.4) Ours

ε = 1% ε = 5% ε = 10% 5% speedup

At 0.27 0.25 0.14 0.15 0.17 38.5%

SeaSurfaceHeight 0.48 0.38 0.29 0.26 0.25 30.9%

EthaneDiol 0.48 0.43 0.28 0.31 0.33 28.7%

Hydrogen 0.99 0.64 0.43 0.48 0.47 24.6%

Isabel 1.29 1.49 0.95 0.89 0.92 30.7%

Combustion 2.55 1.37 0.99 0.90 0.85 34.1%

Boat 1.22 0.82 0.97 1.06 1.02 -28.1%

MinMax 4.01 1.92 2.14 2.28 2.13 -18.4%

Aneurism 4.66 3.43 3.62 3.52 3.00 -2.7%

Foot 9.86 10.42 10.38 8.14 6.14 17.4%

Heptane 8.09 7.41 5.41 5.18 5.16 30.1%

Random 37.29 30.77 28.95 29.04 30.46 5.6%

Backpack 77.28 107.31 62.06 40.11 31.76 48.1%

approximation errors. The column ε = 0 corresponds to the numbers of

TI vertices previsously reported in Section 3.5.1 in the exact case. For the

majority of datasets, we observe a large increase in the number of TI ver-

tices, from a proportion of 70% on average on the real-life datasets to a

proportion of 90% for a small error of 1%, and 94% for a mild tolerance

of 5% on the approximation. The largest increase in the number of TI ver-

tices is reported for Backpack (being a large and noisy dataset). This table

confirms that our strategy of vertex folding (Section 4.2.2) indeed implies a

sensible increase in the number of TI vertices, even for mild approxima-

tion errors. Regarding the criticality estimation (step 2, Section 4.2.1), as

no computation is needed for the vertices which remained topologically

invariant throughout the hierarchy (Section 4.2.1), a higher proportion of

TI vertices in the data is thus likely to significantly decrease the computa-

tional workload, resulting in lower computation times.

Table 4.2 details the sequential computation times of our approach

for different approximation errors. They are compared with public im-

plementations of exact algorithms, both available in TTK [TFL+
17]: the

progressive approach of Chapter 3 (run up to the finest resolution, hence

producing an exact result), and the default algorithm used in TTK [GFJT19]

(run at the finest hierarchy level). The last column of Table 4.2 present the

speedups obtained with a Bottleneck error tolerance of 5%, compared with

the fastest of either reference approaches. We observe an average reduc-

82 Chapter 4. Approximation of Persistence Diagrams with Guarantees

Table 4.3 – Parallel computation times (in seconds, on 8 physical cores) of our algorithm

with different approximation errors. The presented speedups relate to the sequential run

times.

Dataset Default[GFJT19] Progressive (Section 3.4) ε = 0.01 speedup ε = 0.05 speedup ε = 0.1 speedup

At 0.20 0.07 0.05 2.61 0.07 2.24 0.07 2.25

SeaSurfaceHeight 0.21 0.13 0.08 3.65 0.07 3.91 0.07 3.77

EthaneDiol 0.21 0.11 0.08 3.69 0.09 3.60 0.10 3.35

Hydrogen 0.72 0.20 0.13 3.18 0.16 2.95 0.17 2.80

Isabel 0.47 0.46 0.54 1.77 0.28 3.15 0.30 3.05

Combustion 0.34 0.51 0.54 1.83 0.31 2.92 0.25 3.41

Boat 0.29 0.29 0.33 2.94 0.37 2.85 0.34 2.98

MinMax 0.80 0.61 0.69 3.11 0.54 4.23 0.54 3.97

Aneurism 2.03 1.51 1.62 2.23 1.36 2.59 1.33 2.25

Foot 3.12 2.34 2.65 3.91 1.91 4.25 2.04 3.01

Heptane 2.44 2.35 2.08 2.60 1.33 3.88 1.51 3.41

Random 27.04 8.47 7.15 4.05 7.77 3.74 8.89 3.43

Backpack 30.36 24.88 12.63 4.92 8.50 4.72 7.02 4.53

tion of the run times of 18% on real-world datasets, which confirms that

our strategy of maximizing the number of TI vertices effectively reduces

the computation times. The observed speedups are consistent with the

increases in the proportion of TI vertices reported in Table 4.1: a large

increase in the number of TI vertices implies an important reduction of

the computation time. Interestingly, we find our method most beneficial

on datasets that initially present a low amount of TI vertices. This usu-

ally corresponds to a high level of noise, which impedes both reference

methods. In particular, the highest speedup is achieved on Backpack, our

largest, noisiest real-world dataset, with a reduction of computation time

of nearly 50%. In contrast, our method fails to reduce the computation

times on smooth datasets such as MinMax, Boat or Aneurism, for which

the progressive approach really shines. These datasets exhibit high initial

proportions of TI vertices, which limits the increase in TI vertices enabled

by our approach (Table 4.1). For Random, the interpolation cost of folded

vertices seems to counterbalance the speedup induced by the increase in

TI vertices.

Table 4.3 lists the computation times obtained with the parallel version

of our algorithm. We find an overall average parallel efficiency of 43% with

an error level of 5%, which is on par with the progressive approach (Sec-

tion 3.4). Although the traversal of the hierarchy can be trivially parallelize

over vertices, it is subject to synchronization steps between hierarchy lev-

els. The last step of the approach, deducing the persistence diagram from

the critical points, is less balanced. Indeed, the parallel computation of in-

tegral lines between saddle points and extrema (Section 4.2.1) necessitates

locks.

4.3. Results 83

4.3.2 Approximation Accuracy

By design, our approach produces approximated persistence diagrams

with a guaranteed bound on the Bottleneck distance to the exact result

(Section 4.2.3). In the following, we additionally evaluate the accuracy of

our approximation by considering the L2 Wasserstein distance (Section 2.4,

computed with the Auction algorithm [Ber81, KMN16]) between our ap-

proximations and the exact result. We also evaluate ‖ f̂ − f ‖2 to quantify

the pointwise error of the approximated field f̂ . Results are given in Table

4.4.

For comparison, we perform the same evaluation for a naive baseline

approximation which provides identical guarantees. This baseline consists

in computing, with an exact algorithm, the diagram of a staircase function

f , i.e. a quantized version of the input data f , with a quantization step

of 2ε. By construction, the staircase function verifies ‖ f − f ‖∞ < ε (Fig-

ure 4.6) and its persistence diagram is then guaranteed not to exceed a

Bottleneck error of ε [CEH05]. Table 4.4 compares the accuracy of this

baseline approximation to our algorithm. In terms of L2 distance, our ap-

proximations of the input scalar fields are around 2 times more accurate

on average (on real-world datasets, Random and MinMax excluded). This

difference could be expected, as our method performs local and adaptive

linear interpolations, while the staircase approach systematically flattens

Table 4.4 – Accuracy comparison between our approach and a naive baseline approxi-

mation based on the computation of a staircase function, for the same relative Bottleneck

error of 5%. Our approximations are more accurate on average, both in terms of the

L2 distance of the approximated field (2 times more accurate) and in terms of the L2-

Wasserstein distance to the exact persistence diagram (5 times).

Dataset Staircase L2 Ours L2 Ratio Staircase W2 Ours W2 Ratio

At 276.66 75.31 3.67 3.31 1.01 3.29

SeaSurfaceHeight 92.3 58.05 1.59 8.75 1.69 5.17

EthaneDiol 337.55 73.2 4.61 1.78 0.61 2.9

Hydrogen 11.0 13.0 0.85 25.69 12.73 2.02

Isabel 3,591.99 1,569.98 2.29 42.26 8.08 5.23

Combustion 38.04 17.59 2.16 0.87 0.21 4.1

Boat 24.18 9.11 2.66 2.14 0.49 4.37

MinMax 117.55 0.37 314.77 0.0 0.0 -

Aneurism 6.0 9.0 0.67 1,198.14 128.61 9.32

Foot 16,006.11 10,784.33 1.48 5,859.67 1,419.51 4.13

Heptane 5.0 12.0 0.42 716.1 61.12 11.72

Random 29,270.73 3,468.14 8.44 23,863.56 1,038.1 22.99

Backpack 142.0 142.0 1.0 17,941.13 1,933.83 9.28

84 Chapter 4. Approximation of Persistence Diagrams with Guarantees

Figure 4.6 – Comparison of our approach to a naive baseline approximation (staircase

field, middle row), for the same tolerance of 5% on the Bottleneck error. Our approach

(bottom row) provides an approximated persistence diagram that resembles the exact re-

sult (top row), and is around 2 times closer in terms of the Wasserstein distance (W2).

The high persistence critical points (spheres, 2D domain) capture more precisely the fea-

tures of the data in our case. Our approximated field is also two times closer (L2 norm)

to the exact field than the naive approximation.

the data. However, our approach is also significantly more accurate with

regards to the L2-Wasserstein distance to the exact persistence diagrams:

4 times on average on our real-world datasets.

Figure 4.6 further illustrates the limitations of the staircase baseline.

For a given approximation error (5%), our method gives an approximated

diagram that is visually more similar to the exact result, and which better

depicts the number of salient features, as well as the noise in the data.

In contrast, the diagram produced by the staircase approximation is more

difficult to interpret, as the positions of persistence pairs are quantized on

a grid in the 2D birth/death space, resulting in several co-located pairs,

4.3. Results 85

which cannot be distinguished visually. Our approximation of the scalar

field is also closer to the exact field, both visually and in terms of the L2

norm, enabling more accurate critical point approximations in the domain

(top).

4.3.3 Qualitative Analysis

This section discusses the utility of our approximations from a qualitative

point of view, for data analysis and visualization purposes. Figure 4.1

shows the result of our approach on the Backpack dataset. In this example,

our approximated diagrams correctly capture the high persistence max-

ima of the scalar field, which correspond to high density objects inside the

bag (bottles, wires, and metallic parts of the bag). The approximate field

f̂ε resulting from the vertex folding (Section 4.2.2) is more precise in the

vicinity of features of high persistence. Indeed, the volume rendering in

the top views of Figure 4.1 shows clearly the objects inside the bag (high

persistence maxima), while isocontours capturing the cloth of the bag (Fig-

ure 4.1, bottom) illustrate the deterioration of the field in this region. The

same phenomenon can be noted for the Foot dataset (Figure 4.7). More

vertices are folded in the vicinity of low persistence features, typically the

skin of the foot, and the level of deterioration of the field increases with

the approximation error. Conversely, high persistence features (bones of

the toes) are well captured.

The above observation suggests that our method provides a better ap-

proximation for persistent features, and a more degraded evaluation for

Figure 4.7 – Approximated persistence diagrams on the Foot dataset. The 3D top views

show the ten most persistent maxima (spheres), corresponding to the bones of the foot (iso-

contour, computed on the approximated field f̂ε). Our approximated diagrams correctly

capture the most persistent features at a reduced computational cost.

86 Chapter 4. Approximation of Persistence Diagrams with Guarantees

less persistent structures, which was an original motivation for our ap-

proach (to focus the computational efforts on relevant structures). This is

confirmed in Figure 4.1 by the number of noisy pairs (of low persistence,

within the red band) in the approximated diagrams, which is significantly

lower than the amount of noisy pairs (of identical persistence) in the exact

diagram (Figure 4.1, in parenthesis).

Figure 4.8 compares our approximations to the progressive approach.

To generate an approximated result with the progressive approach, we

interrupt its computation at the penultimate hierarchy level (the computa-

tion would become exact at the final level). As documented in Section 3.5.4

of Chapter 3, such intermediate results can provide useful previews, but

however, with no guarantee on the approximation error. This is illus-

trated in Figure 4.8, where the progressive approximation fails at correctly

capturing the maximum of largest persistence. In contrast, our method

produces persistence diagrams that correctly convey the salience of the

features, and are five times more accurate, in terms of the Wasserstein

distance.

Indications about the approximation uncertainty (Section 4.2.6) can be

displayed in the output diagrams. Figure 4.9 shows our approximations

for the Isabel dataset. For each approximation error, the red band indi-

cates uncertain pairs, which may not be part of the exact result. Certain

pairs are represented with a square bounding their correct location. These

glyphs give a good sense of the approximation uncertainty, and are useful

to assess the reliability of the diagram. For instance, a large pair in the

uncertain zone may indicate the presence of a medium persistence feature

Figure 4.8 – Approximation of persistence diagrams on the hydrogen dataset. The best

interrupted result of the progressive approach (Chapter 3) fails at correctly capturing the

global maximum (accurately detected only at the last level), resulting in a diagram that

is 5 times less accurate than our 5% approximation (L2-Wasserstein distance to the exact

result). In contrast, our approximation correctly captures the high persistence features of

the data. On the far right, our 4% approximated diagram detects as certain the fourth

most persistent maxima, which was marked as uncertain with ε = 0.05.

4.4. Limitations and Discussion 87

Figure 4.9 – Approximated diagrams for the Isabel hurricane dataset. The most persistent

maxima of the field (the magnitude of the wind velocity) are represented in the 3D view

as spheres (scaled by persistence). The approximation uncertainty is visualized in the

diagram: in the red band indicates uncertain persistence pairs that may not exist in

the exact persistence diagram, and colored squares indicate a bound on the location of

the persistence pairs that are certain to exist in the exact diagram. Our approximated

persistence diagrams correctly capture these certain pairs in the order of their persistence,

with higher persistence features being detected at higher tolerance on the Bottleneck error.

in the data. This can be confirmed with the computation of a slighlty bet-

ter estimation, as illustrated in Figure 4.8 for the fourth most persistent

feature.

4.4 Limitations and Discussion

Our approximations tend to generate much less low-persistence features

than exact algorithms (Figure 4.1), which can be an issue if features of

interested are hidden among noisy features near the diagonal. On the

upside, this characteristic of our approximations make them well suited

for subsequent analysis and processing (e.g. distances and clustering), as

diagrams are often thresholded in practice prior to further computations,

to remove low persistence pairs anyway.

An important limitation of our approximation approach, compared to

the work presented in Chapter 3, is its lack of progressivity. Indeed, to

provide strong approximation guarantees, the hierarchy has to be com-

pletely traversed and no intermediate result can be provided.

Another limitation is that our approach only supports saddle-

88 Chapter 4. Approximation of Persistence Diagrams with Guarantees

extremum persistence pairs at the moment. However, from our expe-

rience, these correspond in practice to the key features users tend to be

interested in.

Finally, our approach provides strong guarantees on the Bottleneck

distance. Future work is needed for the theoretical study of the impact of

our approximations on the L2 Wasserstein metric.

4.5 Summary

This chapter introduced a method for the approximation of the persis-

tence diagram of a scalar field. This work revisits the approach previously

introduced (Chapter 3), that generated preview diagrams upon interrup-

tion of a progressive framework. We addressed the main drawback of this

approach, namely the lack of guaranteed error bounds on the diagram

estimations. In contrast, we presented a novel algorithm that efficiently

computes the approximation of a persistence diagram within a user con-

trolled approximation error on the Bottleneck distance to the exact result.

We showed that the approximated persistence diagrams are relevant for

visualization and data analysis tasks, as they correctly describe the high

persistence features in the data (i.e. the number and salience of important

features), and they are more concise in practice than the exact diagrams.

The uncertainty related to our approximations can be effectively depicted

visually inside the diagrams.

5Progressive Wasserstein

Barycenters of Persistence

Diagrams

Contents

Our contribution in one image . 93

5.1 Context . 94

5.1.1 Related Work . 94

5.1.2 Contributions . 97

5.2 Background . 98

5.2.1 Efficient Wasserstein distance computation by Auction . . 98

5.2.2 Wasserstein barycenters of Persistence diagrams 100

5.3 Overview . 101

5.4 Progressive Barycenters . 101

5.4.1 Auctions with Price Memorization 101

5.4.2 Accuracy-driven progressivity 102

5.4.3 Persistence-driven progressivity 103

5.4.4 Parallelism . 104

5.4.5 Computation time constraints 104

5.5 Application to Ensemble Topological Clustering 107

5.6 Results . 108

5.6.1 Time performance . 109

5.6.2 Barycenter quality . 111

5.6.3 Ensemble visual analysis with Topological Clustering . . . 114

5.7 Limitations . 116

5.8 Overall time-constrained pipeline 118

5.9 Summary . 119

89

90 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Modern numerical simulations are subject to a variety of input param-

eters, related to the initial conditions of the system under study, as

well as the configuration of its environment. Given recent advances in

hardware computational power, engineers and scientists can now densely

sample the space of these input parameters, in order to better quantify

the sensitivity of the system. For scalar variables, this means that the data

which is considered for visualization and analysis is no longer a single

field, but a collection, called “ensemble”, of scalar fields representing the

same phenomenon, under distinct input conditions and parameters. In

this context, extracting the global trends in terms of features of interest in

the ensemble is a major challenge. Although it is possible to compute a

persistence diagram for each member of an ensemble, in particular in-situ

[BAA+
16, ABG+

15], this process only shifts the problem from the analy-

sis of an ensemble of scalar fields to an ensemble of persistence diagrams.

Then, given such an ensemble of diagrams, the question of estimating a

diagram which is representative of the set naturally arises, as such a rep-

resentative diagram could visually convey to the users the global trends

in the ensemble in terms of features of interest. For this, naive strategies

could be considered, such as estimating the persistence diagram of the

mean of the ensemble of scalar fields. However, given the additive nature

of the pointwise mean, this yields a persistence diagram with an incorrect

number of features (Figure 5.1), which is thus not representative of any of

the diagrams of the input scalar fields.

Figure 5.1 – Synthetic ensemble of a pattern with 2 gaussians and additive noise (a).

The persistence diagram of the pointwise mean (b) contains 8 highly persistent features

although each of the input ensemble members contain only 2 features. The Wasserstein

barycenter (c) provides a diagram which is representative of the set, with a feature number,

range and salience which better describes the input ensemble (2 large features).

91

A promising alternative consists in considering the barycenter of a set

of diagrams, given a distance metric between them, such as the so-called

Wasserstein metric Section 2.4, hence the term Wasserstein barycenter. For

this, an algorithm has been proposed by Turner et al. [TMMH14]. How-

ever, it is based on an iterative procedure, for which each iteration re-

lies itself on a demanding optimization problem (optimal assignment in a

weighted bipartite graph [Mun57]), which makes it impractical for real-life

datasets.

To address this issue, this chapter presents an efficient algorithm for

the progressive approximation of Wasserstein barycenters of persistence

diagrams, with applications to the visual analysis of ensemble data. Given

a set of scalar fields, our approach enables the computation of a per-

sistence diagram which is representative of the set, and which visually

conveys the number, data ranges and saliences of the main features of

interest found in the set. Such representative diagrams are obtained by

computing explicitly the discrete Wasserstein barycenter of the set of per-

sistence diagrams, a notoriously computationally intensive task. In par-

ticular, we revisit efficient algorithms for Wasserstein distance approxima-

tion [Ber81, KMN16] to extend previous work on barycenter estimation

[TMMH14]. We present a new fast algorithm, which progressively approx-

imates the barycenter by iteratively increasing the computation accuracy

as well as the number of persistent features in the output diagram. Such

a progressivity drastically improves convergence in practice and allows to

design an interruptible algorithm, capable of respecting computation time

constraints. This enables the approximation of Wasserstein barycenters

within interactive times. We present an application to ensemble cluster-

ing where we revisit the k-means algorithm to exploit our barycenters and

compute, within execution time constraints, meaningful clusters of en-

semble data along with their barycenter diagram. Extensive experiments

on synthetic and real-life data sets report that our algorithm converges to

barycenters that are qualitatively meaningful with regard to the applica-

tions, and quantitatively comparable to previous techniques, while offer-

ing an order of magnitude speedup when run until convergence (without

time constraint). Our algorithm can be trivially parallelized to provide

additional speedups in practice on standard workstations.

The work presented in this chapter have been published in the journal

IEEE Transactions on Visualization and Computer Graphics as part of the

proceedings of the IEEE VIS 2019 conference [VBT19], where it won a Best

Paper Honorable Mention award. It was certified replicable by the Graph-

92 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

ics Replicability Stamp Initiative (http://www.replicabilitystamp.org/).

Our implementation and the data needed to reproduce this work are

available at https://github.com/julesvidal/wasserstein-pd-barycenter. It

is also integrated in the Topology ToolKit [TFL+
17].

http://www.replicabilitystamp.org/
https://github.com/julesvidal/wasserstein-pd-barycenter

93

Our contribution in one image

Figure 5.2 – The Persistence diagrams of three members (a-c) of the Isabel ensemble (wind velocity) concisely and visually

encode the number, data range and salience of the features of interest found in the data (eyewall and region of high speed

wind, blue and red in (a)). In these diagrams, features with a persistence smaller than 10% of the function range or on

the boundary are shown in transparent white. The pointwise mean for these three members (d) exhibits three salient interior

features (due to distinct eyewall locations, blue, green and red), although the diagrams of the input members only report

two salient interior features at most, located at drastically different data ranges (the red feature is further down the diagonal

in (a) and (b)). The Wasserstein barycenter of these three diagrams (e) provides a more representative view of the features

found in this ensemble, as it reports a feature number, range and salience that better matches the input diagrams (a-c). Our

work introduces a progressive approximation algorithm for such barycenters, with fast practical convergence. Our framework

supports computation time constraints (e) which enables the approximation of Wasserstein barycenters within interactive

times. We present an application to the clustering of ensemble members based on their persistence diagrams ((f), lifting:

α = 0.2), which enables the visual exploration of the main trends of features of interest found in the ensemble.

94 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

5.1 Context

5.1.1 Related Work

The literature related to this work can be classified into three main cate-

gories, reviewed in the following: (i) uncertainty visualization, (ii) ensem-

ble visualization, and (iii) persistence diagram processing.

Uncertainty visualization

The analysis and visualization of uncertainty in data is a notoriously

challenging problem in the visualization community [PK12, BHJ+14,

unc08, JS03, MAH+
05, PWL97]. In this context, the data variability is

explicitly modeled by an estimator of the probability density function

(PDF) of a pointwise random variable. Several representations have

been proposed to visualize the related data uncertainty, either focus-

ing on the entropy of the random variables [PGA13], on their correla-

tion [PW12], or gradient variation [PMW13]. When geometrical con-

structions are extracted from uncertain data, their positional uncertainty

has to be assessed. For instance, several approaches have been pre-

sented for level sets, under various interpolation schemes and PDF mod-

els [AE13, ASE16, PRW11, PWH11, PH11, PH13, PPH13, SKS12, AJ19].

Other approaches addressed critical point positional uncertainty, either

for Gaussian [LS16, MOT10, MOT11, PPH12] or uniform distributions

[GST14, BJB+
12, Szy13]. In general, visualization methods for uncertain

data are specifically designed for a given distribution model of the point-

wise random variables (Gaussian, uniform, etc.). This challenges their

usage with ensemble data, where PDF estimated from empirical obser-

vations can follow an arbitrary, unknown model. Moreover, most of the

above techniques do not consider multi-modal PDF models, which is a

necessity when several distinct trends occur in the ensemble.

Ensemble visualization

Another category of approaches has been studied to specifically visualize

the main trends in ensemble data. In this context, the data variability is

directly encoded by a series of global empirical observations (i.e. the mem-

bers of the ensemble). Existing visualization techniques typically construct

geometrical objects, such as level sets or streamlines, for each member

of the ensemble. Then, given this ensemble of geometrical objects, the

question of estimating an object which is representative of the ensemble

5.1. Context 95

naturally arises. For this, several methods have been proposed, such as

spaghetti plots [DHLZ02] in the case of level-set variability in weather

data ensemble [PWB+
09, SZD+

10], or box-plots for the variability of con-

tours [WMK13] and curves in general [MWK14]. For the specific purpose

of trend variability analysis, Hummel et al. [HOGJ13] developed a La-

grangian framework for classification in flow ensembles. Related to our

work, clustering techniques have been used to analyze the main trends in

ensembles of streamlines[FBW16] and isocontours [FKRW16]. However,

only few techniques have focused on applying this strategy to topologi-

cal objects. Overlap-based heuristics have been investigated to estimate a

representative contour tree from an ensemble [WZ13, Kra10]. Favelier et

al. [FFST18] introduced an approach to analyze critical point variability

in ensembles. It relies on the spectral clustering of the ensemble members

according to their persistence map, a scalar field defined on the input ge-

ometry which characterizes the spatial layout of persistent critical points.

However, the clustering stage of this approach takes as an input a distance

matrix between the persistence maps of all the members of the ensemble,

which requires to mantain them all in memory, which is not conceivable

for large-scale ensembles counting a high number of members. More-

over, the clustering itself is performed on the spectral embedding of the

persistence maps, where distances are loose approximations of the intrin-

sic metric between these objects. In contrast, the clustering application

described in this chapter directly operates on the persistence diagrams

of the ensemble members, whose memory footprint is orders of magni-

tude smaller than the actual ensemble data. This makes our approach

more practical, in particular in the perspective of an in-situ computation

[BAA+
16] of the persistence diagrams. Also, it is built on top of our

progressive algorithm for Wasserstein barycenters, which focuses on the

Wasserstein metric between diagrams. Optionally, our work can also in-

tegrate the spatial layout of critical points by considering a geometrically

lifted version of this metric [SPCT18b].

Persistence diagram processing

To define the barycenter of a set of persistence diagrams, a metric (i)

first needs to be introduced to measure distances between them. Then,

barycenters (ii) can be formally defined as minimizers of the sum of dis-

tances to the set of diagrams.

(i) The estimation of distances between topological abstractions has

96 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

been a long-studied problem, in particular for similarity estimation tasks.

Several heuristical approaches have been documented for the fast estima-

tion of structural similarity [HSKK01a, TN14, SSW14, TN13]. More for-

mal approaches have studied various metrics between topological abstrac-

tions, such as Reeb graphs [BGW14, BMW15] or merge trees [BYM+
14].

For persistence diagrams, the Bottleneck [CSEH05] and Wasserstein dis-

tances [Mon81, Kan42, EH09], have been widely studied, for instance

in machine learning [Cut13] and adapted for kernel based methods

[RHBK15, CCO17, RSL17]. The numerical computation of the Wasserstein

distance between two persistence diagrams requires to solve an optimal

assignment problem between them. The typical methods for this are the

exact Munkres algorithm [Mun57], or an auction-based approach [Ber81]

that provides an approximate result with improved time performance.

Kerber et al. [KMN16] specialized the auction algorithm to the case of per-

sistence diagrams and showed how to significantly improve performances

by leveraging adequate data structures for proximity queries. Soler et al.

[SPCT18b] introduced a fast extension of the Munkres approach, also tak-

ing advantage of the structure of persistence diagrams, in order to solve

the assignment problem in an exact and efficient way, using a reduced,

sparse and unbalanced cost matrix.

(ii) Recent advances in optimal transport [Cut13] enabled the prac-

tical resolution of transportation problems between continuous quanti-

ties [CD14, SDGP+
15]. These methods have been successfully applied

to persistence diagrams [LCO18]. However, this application requires to

represent the input diagrams as heat maps of fixed resolution [ACE+
17].

Such a rasterization can be interpreted as a pre-normalization of the di-

agrams, which can be problematic for applications where the considered

diagrams have different persistence scales, as typically found with time-

varying phenomena for instance. Moreover, this approach does not ex-

plicitly produce a persistence diagram as an output, but a heat map of the

population of persistence pairs in the barycenter. This challenges its usage

for visualization applications, as the features of interest in the barycen-

ter cannot be directly inferred from the barycenter heat map. In con-

trast, our approach produces explicitly a persistence diagram as an out-

put, from which the geometry of the features (their number, data ranges

and salience) can be directly visually inspected. Moreover, such an ex-

plicit representation also enables the efficient geometrical lifting of the

Wasserstein metric [SPCT18b], which is relevant for scientific visualization

applications but which would require to regularly sample a five dimen-

5.1. Context 97

sional space with heat map based approaches. Turner et al. [TMMH14]

introduced an algorithm for the computation of a Fréchet mean of a set

of persistence diagrams with regard to the Wasserstein metric. This ap-

proach provides explicit barycenters, which makes it appealing for the

applications. However, its very high computational cost makes it im-

practical for real-life data sets. In particular, it is based on an iterative

procedure, for which each iteration relies itself on N optimal assignment

problems [Mun57] between persistence diagrams (for the Wasserstein dis-

tances), where N is the number of members in the ensemble. A naive

approach to address this computational bottleneck would be to combine

this method with the efficient algorithms for Wasserstein distances men-

tioned previously [KMN16, SPCT18b]. However, as shown in Table 5.6,

such an approach is still computationally expensive and it can require up

to hours of computation on certain data sets. In contrast, our algorithm

converges in multi-threaded mode in a couple of minutes at most, and its

progressive nature additionally allows for its interruption within interac-

tive times, while still providing qualitatively meaningful results.

5.1.2 Contributions

This chapter presents the following new contributions:

1. A progressive algorithm for Wasserstein barycenters of persistence diagrams:

We revisit efficient algorithms for Wasserstein distance approximation

[Ber81, KMN16] in order to extend previous work on barycenter esti-

mation [TMMH14]. In particular, we introduce a new approach based

on a progressive approximation strategy, which iteratively refines both

computation accuracy and output details. The persistence pairs of the

input diagrams are progressively considered in decreasing order of per-

sistence. This focuses the computation towards the most salient features

of the ensemble, while considering noisy persistent pairs last. The re-

turned barycenters are explicit and provide insightful visual hints about

the features present in the ensemble. Our progressive strategy drasti-

cally accelerates convergence in practice, resulting in an order of magni-

tude speedup over the fastest combinations of existing techniques. The

algorithm is trivially parallelizable, which provides additional speedups

in practice on standard workstations. We present an interruptible exten-

sion of our algorithm to support computation time constraints. This

enables to produce barycenters accounting for the main features of the

data within interactive times.

98 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

2. An interruptible algorithm for the clustering of persistence diagrams: We ex-

tend the above methods to revisit the k-means algorithm and introduce

an interruptible clustering of persistence diagrams, which is used for

the visual analysis of the global feature trends in ensembles.

5.2 Background

5.2.1 Efficient Wasserstein distance computation by Auction

This section briefly describes a fast approximation of Wasserstein dis-

tances by the auction algorithm [Ber81, KMN16].

The assignment problem involved in the definition of the Wasserstein

distance (Equation 2.2, page 28):

Wq
(
D(f),D(g)

)
= min

φ∈Φ

 ∑
a∈D(f)

dq
(
a, φ(a)

)q

1/q

(2.2)

can be modeled in the form of a weighted bipartite graph, where the

points a ∈ D′(f) are represented as nodes, connected by edges to nodes

representing the points of b ∈ D′(g), with an edge weight given by

d2(a, b)2 (Equation 2.1, page 28). To efficiently estimate the optimal as-

signment, Bertsekas introduced the auction algorithm [Ber81] (Figure 5.3),

which replicates the behavior of a real-life auction: the points of D′(f)

are acting as bidders that iteratively make offers for the purchase of the

points of D′(g), known as the objects. Each bidder a ∈ D′(f) makes a

benefit βa→b = −d2(a, b)2 for the purchase of an object b ∈ D′(g), which

is itself labeled with a price pb ≥ 0, initially set to 0. During the itera-

tions of the auction, each bidder a tries to purchase the object b of highest

value va→b = βa→b − pb. The bidder a is then said to be assigned to the

object b. If b was previously assigned, its previous owner becomes unas-

signed. At this stage, the price of b is increased by δa + ε, where δa is the

absolute difference between the two highest values va→b that the bidder a

found among the objects b, and where ε > 0 is a constant. This bidding

procedure is repeated iteratively among the bidders, until all bidders are

assigned (which is guaranteed to occur by construction, thanks to the ε

constant). At this point, it is said that an auction round has completed: a

bijective, possibly sub-optimal, assignement φ exists between D′(f) and

D′(g). The overall algorithm will repeat auction rounds, which progres-

sively increases prices under the effect of competing bidders.

The constant ε plays a central role in the auction algorithm. Let

5.2. Background 99

Figure 5.3 – Illustration of the Auction algorithm [Ber81] on a 2D example for the

optimal assignment of 2 point sets (light and dark green). Boxes and columns represent

auction rounds and auction iterations respectively. Each matrix reports the value va→b

currently estimated by the bidder a for the purchase of the object b. Initially (top left),

va→b = βa→b = −d2(a, b)2 as pb is set to 0. Assignments are shown with black arrows.

After the first round (top box), a sub-optimal assignment is achieved, which becomes

optimum at the second round (bottom box). Note that bidders can steal objects from each

other within one auction round (iteration 3, second round).

Ŵ2
(
D′(f),D′(g)

)
=
√

∑a∈D′(f) d2
(
a, φ(a)

)2 be the approximation of the

Wasserstein distance W2
(
D(f),D(g)

)
, obtained with the assignment φ re-

turned by the algorithm. Large values of ε will drastically accelerate con-

vergence (as they imply fewer iterations for the construction of a bijective

assignment φ within one auction round, Figure 5.3), while low values will

improve the accuracy of Ŵ2. This observation is a key insight at the ba-

sis of our approach. Bertsekas suggests a strategy called ε-scaling, which

decreases ε after each auction round. In particular, if:

Ŵ2
(
D′(f),D′(g)

)2 ≤ (1 + γ)2
(

Ŵ2
(
D′(f),D′(g)

)2 − ε|D′(f)|
)

(5.1)

then it can be shown that [BC91, KMN16]:

W2
(
D(f),D(g)

)
≤ Ŵ2

(
D′(f),D′(g)

)
≤ (1 + γ)W2

(
D(f),D(g)

)
(5.2)

This result is particularly important, as it enables to estimate the opti-

mal assignment, and thus the Wasserstein distance, with an on-demand

100 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

accuracy (controlled by the parameter γ) by using Equation 5.1 as a stop-

ping condition for the overall auction algorithm. For persistence diagrams,

Kerber et al. showed how the computation could be accelerated by using

space partitioning data structures such as kd-trees [KMN16]. In our ap-

plications, ε is initially set to be equal to 1/4 of the largest edge weight

d2(a, b)2, and is divided by 5 after each auction round, as recommended

by Bertsekas [Ber81]. We use γ = 0.01, as suggested by Kerber et al.

[KMN16].

5.2.2 Wasserstein barycenters of Persistence diagrams

Let D be the space of persistence diagrams. The discrete Wasserstein

barycenter of a set F = {D(f1),D(f2), . . . ,D(fN)} of persistence diagrams

can be introduced as the Fréchet mean of the set, under the metric W2. It

is the diagram D∗ that minimizes its distance to all the diagrams of the set

(i.e. minimizer of the so-called Fréchet energy):

D∗ = arg min
D∈D

∑
D(fi)∈F

W2
(
D,D(fi)

)2 (5.3)

The computation of Wasserstein barycenters involves a computation-

ally demanding optimization problem, for which the existence of at least

one locally optimum solution has been shown by Turner et al. [TMMH14],

who also introduced the first algorithm for its computation. This algo-

rithm (Algorithm 1) consists in iterating a procedure that we call Relax-

ation (line 3 to 8), which resembles a Lloyd relaxation [Llo82], and which is

composed itself of two sub-routines: (i) Assignment (line 5) and (ii) Update

(line 7). Given an initial barycenter candidate D randomly chosen among

the set F , the first step ((i) Assignment) consists in computing an optimal

assignment φi : D → D(fi) between D and each diagram D(fi) of the set

F , with regard to Equation 2.2. The second step ((ii) Update) consists in

updating the candidate D to a position in D which minimizes the sum of

its squared distances to the diagrams of F under the current set of assign-

ments {φ1, φ2, . . . , φN}. In practice, this last step is achieved by replacing

each point a ∈ D by the arithmetic mean (in the birth/death space) of all

its assignments φi(a). The overall algorithm continues to iterate the Relax-

ation procedure until the set of optimal assignments φi remains identical

for two consecutive iterations.

5.3. Overview 101

Algorithm 1: Reference algorithm for Wasserstein Barycenters [TMMH14].

Input : Set of diagrams F = {D(f1),D(f2), . . . ,D(fN)}
Output : Wasserstein barycenter D∗

1: D∗ ← D(fi) // with i randomly chosen in [1, N]

2: while {φ1, φ2, . . . , φN} change do

3: // Relaxation start

4: for i ∈ [1, N] do

5: φi ← Assignment
(
D(fi),D∗

)
// optimizing Equation 2.2

6: end for

7: D∗ ← Update(φ1, . . . , φn) // arithmetic means in birth/death space

8: // Relaxation end

9: end while

10: return D∗

5.3 Overview

The key insights of our approach are twofolds. First, in the reference

algorithm (Algorithm 1), from one Relaxation iteration to the next (lines

3 to 8), the estimated barycenter is likely to vary only slightly. Thus,

the assignments involved in the Wasserstein distance estimations can be

re-used as initial conditions along the iterations of the barycenter Relax-

ation (Section 5.4.1). Second, in the initial Relaxation iterations, the esti-

mated barycenter can be arbitrarily far from the final, optimized barycen-

ter. Thus, for these early iterations, it can be beneficial to relax the level of

accuracy of the Assignment step, which is the main bottleneck and to pro-

gressively increase it as the barycenter converges to a solution. Progressiv-

ity can be injected at two levels: by controlling the accuracy of the distance

estimation itself (Section 5.4.2) and the resolution of the input diagrams

(Section 5.4.3). Our framework is easily parallelizable (Section 5.4.4) and

the progressivity allows to design an interruptible algorithm, capable of

respecting running time constraints (Section 5.4.5). The same ideas pre-

sented in these sections can also be applied to the design of a progressive

and interruptible clustering algorithm (Section 5.5).

5.4 Progressive Barycenters

5.4.1 Auctions with Price Memorization

The Assignment step of the Wasserstein barycenter computation (line 5, 1)

can be resolved in principle with any of the existing techniques for Wasser-

102 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

stein distance estimation [Mun57, Mor10, KMN16, SPCT18b]. Among

them, the Auction based approach [Ber81, KMN16] (Section 5.2.1) is par-

ticularly relevant as it can compute very efficiently approximations with

on-demand accuracy.

In the following, we consider that each distance computation involves

augmented diagrams (Section 2.4, page 27) . Each input diagram D(fi) ∈ F
is then considered as a set of bidders while the output barycenter D∗ con-

tains the objects to purchase. Each input diagram D(fi) maintains its own

list of prices pi
b for the purchase of the objects b ∈ D∗ by the bidders

a ∈ D(fi). The search by a bidder for the two most valuable objects to

purchase is accelerated with space partitioning data structures, by using

a kd-tree and a lazy heap respectively for the off- and on-diagonal points

[KMN16] (these structures are re-computed for each Relaxation). Thus, the

output barycenter D∗ maintains only one kd-tree and one lazy heap for

this purpose. Since Wasserstein distances are only approximated in this

strategy, we suggest to relax the overall stopping condition (Algorithm 1)

and stop the iterations after two successive increases in Fréchet energy

(Equation 5.3), as commonly done in gradient descent optimizations. In

the rest of the paper, we call the above strategy the Auction barycenter algo-

rithm [TMMH14]+[KMN16], as it just combines the algorithms by Turner

et al. [TMMH14] and Kerber et al. [KMN16].

However, this usage of the auction algorithm results in a complete re-

boot of the entire sequence of auction rounds upon each Relaxation, while

in practice, for the barycenter problem, the output assignments φi may

be very similar from one Relaxation iteration to the next and thus could

be re-used as initial solutions. For this, we introduce a mechanism that

we call Price Memorization, which consists in initializing the prices pi
b for

each bidder a ∈ D(fi) to the prices obtained at the previous Relaxation

iteration (instead of 0). This has the positive effect of encouraging bid-

ders to bid in priority on objects which were previously assigned to them,

hence effectively re-using the previous assignments as an initial solution.

This memorization makes most of the early auction rounds become un-

necessary in practice, which enables to drastically reduce their number, as

detailed in the following.

5.4.2 Accuracy-driven progressivity

The reference algorithm for Wasserstein barycenter computation (Al-

gorithm 1) can also be interpreted as a variant of gradient descent

5.4. Progressive Barycenters 103

[TMMH14]. For such methods, it is often observed that approximations

of the gradient, instead of exact computations, can be sufficient in practice

to reach convergence. This observation is at the basis of our progressive

strategy. Indeed, in the early Relaxation iterations, the barycenter can be

arbitrarily far from the converged result and achieving a high accuracy in

the Assignment step (line 5) for these iterations is often a waste of com-

putation time. Therefore we introduce a mechanism that progressively

increases the accuracy of the Assignment step along the Relaxation itera-

tions, in order to obtain more accuracy near convergence.

To achieve this, inspired by the internals of the auction algorithm, we

apply a global ε-scaling , where we progressively decrease the value of ε,

but only at the end of each Relaxation. Combined with Price Memorization ,

this strategy enables us to perform only one auction round per Assignment

step. As large ε values accelerate auction convergence at the price of accu-

racy, this strategy effectively speeds up the early Relaxation iterations and

leads to more and more accurate auctions, and thus assignments, along

the Relaxation iterations.

In practice, we divide ε by 5 after each Relaxation, as suggested by Bert-

sekas [Ber81] in the case of the regular auction algorithm (Section 5.2.1).

Moreover, to guarantee precise final barycenters (obtained for small ε val-

ues), we modify the overall stopping condition to prevent the algorithm

from stopping if ε is larger than 10−5 of its initial value.

5.4.3 Persistence-driven progressivity

In practice, the persistence diagrams of real-life data sets often contain a

very large number of critical point pairs of low persistence. These nu-

merous small pairs correspond to noise and are often meaningless for the

applications. However, although they individually have only little im-

pact on Wasserstein distances (Equation 2.2), their overall contributions

may be non-negligible. To account for this, we introduce in this section

a persistence-driven progressive mechanism, which progressively inserts

in the input diagrams critical point pairs of decreasing persistence. This

focuses the early Relaxation iterations on the most salient features of the

data, while considering the noisy ones last. In practice, this encourages the

optimization to explore more relevant local minima of the Fréchet energy

(Equation 5.3) that favor persistent features.

Given an input diagram D(fi), let Dρ(fi) be the subset of its points

with persistence higher than ρ: Dρ(fi) = {a ∈ D(fi) | ya − xa > ρ}.

104 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

To account for persistence-driven progressivity, we run our barycenter al-

gorithm (with Price Memorization, Section 5.4.1, and accuracy-driven pro-

gressivity, Section 5.4.2) by initially considering as an input the diagrams

Dρ(fi). After each Relaxation iteration (2, line 10), we decrease ρ such that

|Dρ(fi)| does not increase by more than 10% (to progress at uniform speed)

and such that ρ does not get smaller than
√

τε (we set τ = 4 to replicate

locally Bertsekas’s suggestion for ε setting, Section 5.2.1). Initially, ρ is set

to half of the maximum persistence found in the input diagrams. Along

the Relaxation iterations, the input diagrams Dρ(fi) are progressively pop-

ulated, which yields the introduction of new points in the barycenter D∗,
which we initialize at locations selected uniformly among the newly in-

troduced points of the N inputs. This strategy enables to distribute among

the inputs the initialization of the new barycenter points. The correspond-

ing prices are initialized with the minimum price pi
b found for the objects

b ∈ D∗ at the previous iteration.

5.4.4 Parallelism

Our progressive framework can be trivially parallelized as the most com-

putationally demanding task, the Assignment step (Algorithm 2), is inde-

pendent for each input diagram D(fi). The space partitioning data struc-

tures used for proximity queries to D∗ are accessed independently by each

bidder diagram. Thus, we parallelize our approach by running the Assign-

ment step in nt independent threads.

5.4.5 Computation time constraints

Our persistence-driven progressivity (Section 5.4.3) focuses the early iter-

ations of the optimization on the most salient features, while considering

the noisy ones last. However, as discussed before, low persistence pairs

in the input diagrams are often considered as meaningless in the appli-

cations. This means that our progressive framework can in principle be

interrupted before convergence and still provide a meaningful result.

Let tmax be a user defined time constraint. We first progressively in-

troduce points in the input diagrams Dρ(fi) and perform the Relaxation

iterations for the first 10% of the time constraint tmax, as described in Sec-

tion 5.4.3. At this point, the optimized barycenter D∗ contains only a

fraction of the points it would have contained if computed until conver-

gence. To guarantee a precise output barycenter, we found that contin-

uing the Relaxation iterations for the remaining 90% of the time, without

5.4. Progressive Barycenters 105

introducing new persistence pairs, provided the best results. In practice,

in most of our experiments, we observed that this second optimization

part fully converged even before reaching 90% of the computation time

constraint. Algorithm 2 summarizes our overall approach for Wasserstein

barycenters of persistence diagrams, with price memorization, progressiv-

ity, parallelism and time constraints. Several iterations of our algorithm

are illustrated on a toy example in Figure 5.4.

Algorithm 2: Our overall algorithm for Progressive Wasserstein Barycenters.

Input : Set of diagrams F = {D(f1),D(f2), . . . ,D(fN)}
Time constraint tmax

Output : Wasserstein barycenter D∗ρ
1: D∗ρ ← Dρ(fi) // with i randomly chosen in [1, N]

2: while the Fréchet energy decreases do

3: // Relaxation start

4: for i ∈ [1, N] do

5: // In parallel // Section 5.4.4

6: φi ← Assignment
(
Dρ(fi),D∗ρ

)
// Section 5.4.1

7: end for

8: D∗ρ ← Update(φ1, . . . , φn) // arithmetic means in birth/death space

9: EpsilonScaling() // Section 5.4.2

10: if t < 0.1× tmax then PersistenceScaling() // Section 5.4.3

11: else if t >= tmax then return D∗ρ // Section 5.4.5

12: // Relaxation end

13: end while

14: return D∗ρ

106 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Figure 5.4 – Iterations of our progressive algorithm on a randomly generated toy example. The top row presents the

input toy ensemble and the corresponding persistence diagrams. Then, for each iteration, the four input diagrams

are showed on the left and the corresponding barycenter on the right. In the input diagrams, under the persistence

threshold (white line), the persistence pairs in transparent white have not been added yet to the assignment problem.

The colors of the remaining pairs indicate their matched pairs in the barycenter. Initially, only the largest pair is

present in each diagram, and the barycenter is identical to the first thresholded input diagram. The persistence

threshold is progressively decreased along the relaxation process, allowing more persistence pairs to be added in the

diagrams. At each iteration, one Update step occurs, followed by a decreasing of the persistence threshold, and one

Assignment step, whose result is displayed. As such, persistence pairs in the input diagrams can be matched to the

diagonal, and are in this case represented with a white bar with black spheres. This event takes place at iterations 1,

2, 3, 5, and 7, and always precedes the addition of a pair in the barycenter. On the contrary, pairs can be deleted from

the barycenter if they are not matched to any pair anymore in the input diagrams, such as the blue pair at iteration

6. The evolution of the Fréchet energy (bottom right) illustrates the fast convergence of the barycenter towards a local

minimizer.

5.5. Application to Ensemble Topological Clustering 107

5.5 Application to Ensemble Topological Clustering

This section presents an application of our progressive framework for

Wasserstein barycenters of persistence diagrams to the clustering of the

members of ensemble data sets. Since it focuses on persistence diagrams,

this strategy enables to group together ensemble members that have the

same topological profile, hence effectively highlighting the main trends

found in the ensemble in terms of features of interest.

The k-means is a popular algorithm for the clustering of the elements

of a set, if distances and barycenters can be estimated on this set. The lat-

ter is efficiently computable for persistence diagrams thanks to our novel

progressive framework and we detail in the following how to revisit the

k-means algorithm to make it use our progressive barycenters as estimates

of the centroids of the clusters.

The k-means is an iterative algorithm, which highly resembles barycen-

ter computation algorithms (Section 5.2.2), where each Clustering iteration

is composed itself of two sub-routines: (i) Assignment and (ii) Update. Ini-

tially, k cluster centroids D∗j (j ∈ [1, k]) are initialized on k diagrams D(fi)

of the input set F . For this, in practice, we use the k-means++ heuristic de-

scribed by Celebi et al. [CKV13], which aims at maximizing the distance

between centroids. Then, the Assignment step consists in assigning each

diagram D(fi) to its closest centroid D∗j . This implies the computation,

for each diagram D(fi) of its Wasserstein distance W2 to all the centroids

D∗j , j ∈ [1, k]. For this step, we estimate these pairwise distances with

the Auction algorithm run until convergence (γ = 0.01, Section 5.2.1). In

practice, we use the accelerated k-means strategy described by Elkan [Elk03],

which exploits the triangle inequality between centroids to skip, given a

diagram D(fi), the computation of its distance to centroids D∗j which can-

not be the closest. Next, the Update step consists in updating each cen-

troid’s location by placing it at the barycenter (with Algorithm 2) of its

assigned diagrams D(fi). The algorithm continues these Clustering itera-

tions until convergence, i.e. until the assignments between the diagrams

D(fi) and the k centroids D∗j do not evolve anymore, hence yielding the

final clustering.

From our experience, the Update step of a Clustering iteration is by far

the most computationally expensive. To speed up this stage in practice,

we derive a strategy that is similar to our approach for barycenter approx-

imation: we reduce the computation load of each Clustering iteration and

progressively increase their accuracy along the optimization. This strat-

108 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Table 5.1 – Comparison of running times (in seconds, 1 thread) for the estimation of

Wasserstein barycenters of Persistence diagrams. N and #D(fi)
respectively stand for

the number of members in the ensemble and the average size of the input persistence

diagrams.

Data set N #D(fi)

Sinkhorn

[LCO18]

Munkres

[TMMH14]+[SPCT18b]

Auction

[TMMH14]+[KMN16]
Ours Speedup

Starting Vortex (Figure 5.10) 12 36 40.98 0.06 0.67 0.28 0.2

Vortex Street (Figure 5.9) 45 14 54.21 0.14 0.47 0.23 0.6

Isabel (3D) (Figure 5.2) 12 1,337 1,070.57 > 24H 377.42 82.95 4.5

Sea Surface Height (Figure 5.11) 48 1,379 4,565.37 > 24H 949.08 75.90 12.5

Gaussians (Figure 5.5) 100 2,078 7,499.33 > 24H 8,975.60 785.53 11.4

egy is motivated by a similar observation: early centroids are quite dif-

ferent from the converged ones, which motivates an accuracy reduction

in the early Clustering iterations of the algorithm. Thus, for each Cluster-

ing iteration, we use a single round of auction with price memorization

(Section 5.4.1), and a single barycenter update (i.e. a single Relaxation it-

eration, 2). Overall, only one global ε-scaling (Section 5.4.2) is applied at

the end of each Clustering iteration. This enhances the k-means algorithm

with accuracy progressivity. If a diagram D(fi) migrates from a cluster j

to a cluster l, the prices of the objects of D∗l for the bidders of D(fi) are

initialized to 0 and we run the auction algorithm between D(fi) and D∗l
until the pairwise ε value matches the global ε value, in order to obtain

prices for D(fi) which are comparable to the other diagrams. Also, we ap-

ply persistence-driven progressivity (Section 5.4.3) by adding persistence

pairs of decreasing persistence in each diagram D(fi) along the Clustering

iterations. Finally, a computation time constraint can also be provided, as

described in Section 5.4.5. Results of our clustering scheme are presented

in Section 5.6.3.

5.6 Results

This section presents experimental results obtained on a computer with

two Xeon CPUs (3.0 GHz, 2x4 cores), with 64GB of RAM. The input

persistence diagrams were computed with the FTM algorithm [GFJT17,

TFL+
17]. We implemented our approach in C++, as TTK modules.

Our experiments were performed on a variety of simulated and ac-

quired 2D and 3D ensembles, taken from Favelier et al. [FFST18]. The

data is described in Appendix A. The Gaussians ensemble contains 100 2D

synthetic noisy members, with 3 patterns of Gaussians (Figure 5.5). The

considered features of interest in this example are the maxima. The Vortex

Street ensemble (Figure 5.9) includes 45 runs of a 2D simulation of flow

5.6. Results 109

Table 5.2 – Running times (in seconds) of our approach (run until convergence) with 1

and 8 threads. N and #D(fi)
stand for the number of members in the ensemble and the

average size of the diagrams.

Data set N #D(fi) 1 thread 8 threads Speedup

Starting Vortex (Figure 5.10) 12 36 0.28 0.19 1.5

Vortex Street (Figure 5.9) 45 14 0.23 0.10 2.3

Isabel (3D) (Figure 5.2) 12 1,337 82.95 31.75 2.6

Sea Surface Height (Figure 5.11) 48 1,379 75.90 19.40 3.9

Gaussians (Figure 5.5) 100 2,078 785.53 117.91 6.6

turbulence behind an obstacle. The considered scalar field is the curl or-

thogonal component, for 5 fluids of different viscosity. In this application,

salient extrema are typically considered as reliable estimations of the cen-

ter of vortices. Thus, each run is represented by two diagrams, processed

independently by our algorithms: one for the (0, 1) pairs (involving min-

ima) and one for the
(
(d− 1), d

)
pairs (involving maxima). The Starting

Vortex ensemble (Figure 5.10) includes 12 runs of a 2D simulation of the

formation of a vortex behind a wing, for 2 distinct wing configurations.

The considered data is also the curl orthogonal component and diagrams

involving minima and maxima are also considered. The Isabel data set

(Figure 5.2) is a volume ensemble of 12 members, showing key time steps

(formation, drift and landfall) in the simulation of the Isabel hurricane

[Sci04]. In this example, the eyewall of the hurricane is typically character-

ized by high wind velocities, well captured by velocity maxima. Thus we

only consider diagrams involving maxima. Finally, the Sea Surface Height

ensemble (Figure 5.11) is composed of 48 observations taken in January,

April, July and October 2012 (https://ecco.jpl.nasa.gov/products/all/).

Here, the features of interest are the center of eddies, which can be reli-

ably estimated with height extrema. Thus, both the diagrams involving

the minima and maxima are considered and independently processed by

our algorithms. Unless stated otherwise, all results were obtained by con-

sidering the Wasserstein metric W2 based on the original pointwise metric

(Equation 2.1) without geometrical lifting (i.e. α = 0, Section 2.4).

5.6.1 Time performance

Table 5.1 evaluates the time performance of our progressive framework

when run until convergence (i.e. no computation time constraint). This ta-

ble also provides running times for 3 alternatives. The column, Sinkhorn,

provides the timings obtained with a Python CPU implementation kindly

https://ecco.jpl.nasa.gov/products/all/

110 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Figure 5.5 – Clustering the Gaussians ensemble. From left to right, pointwise mean and

Wasserstein barycenter for each of the identified clusters (tmax : 10s.) with geometrical

lifting (α = 0.65).

provided by Lacombe et al. [LCO18], for which we used the recommended

parameter values (entropic term: 10−1/#D(fi) heat map resolution: 1002).

Note that this approach casts the problem as an Eulerian transport opti-

mization under an entropic regularization term. Thus, it optimizes for a

convex functional which is considerably different from the Fréchet energy

considered in our approach (Equation 5.3). Overall, these aspects, in addi-

tion to the difference in programming language, challenge direct compar-

isons and we only report running times for completeness. The columns

Munkres, noted [TMMH14]+[SPCT18b], and Auction, noted [TMMH14]+

[KMN16], report the running times of our own C++ implementation of

Turner’s algorithm [TMMH14] where distances are respectively estimated

with the exact method by Soler et al. [SPCT18b] and our own C++ imple-

mentation of the auction-based approximation by Kerber et al. [KMN16]

(with kd-tree and lazy heap, run until convergence, γ = 0.01).

As discussed in Section 3.1.1, the Sinkhorn method [LCO18] considers

an intermediate heat map representation of persistence diagrams and does

not explicitly produce a diagram on its output, which limits its applica-

bility. Moreover, the geometrical lifting described in Section 2.4, which is

particularly useful in our applications, is difficult to express in this Eu-

lerian setting, where 5-dimensional histograms would be needed, which

is impractical. In contrast, the Munkres and Auction approaches produce

explicit barycenters and optimize the same functional as our approach

(Equation 5.3), which allows direct comparison.

As predicted, the cubic time complexity of the Munkres algorithm

makes it impractical for barycenter estimation, as the computation com-

pleted within 24 hours for only two ensembles. The Auction approach is

more practical but still requires up to hours to converge for the largest

data sets. In contrast, our approach converges in sequential in less than

15 minutes at most. The column Speedup reports the gain obtained with

our method against the fastest of the two explicit alternatives, Munkres or

5.6. Results 111

Figure 5.6 – Interrupted Wasserstein barycenters for one cluster of the Sea Surface

Height ensemble with different computation time constraints. From left to right : 0.1 s.,

1 s., 10 s., and full convergence (21 s.).

Auction. For ensembles of realistic size, this speedup is about an order of

magnitude. As reported in Table 5.2, our approach can be trivially paral-

lelized with OpenMP by running the Assignment step (Algorithm 2) in in-

dependent threads (Section 5.4.4). As the size of the input diagrams D(fi)

may strongly vary within an ensemble, this trivial parallelization may re-

sult in load imbalance among the threads, impairing parallel efficiency.

In practice, this strategy still provides reasonable speedups, bringing the

computation down to a couple of minutes at most.

5.6.2 Barycenter quality

Table 5.3 compares the Fréchet energy (Equation 5.3) of the converged

barycenters for our method and the Auction barycenter alternative

[TMMH14]+[KMN16] . The Wasserstein distances between the results

of the two approaches are provided in Table 5.4. Note that the two algo-

rithms (our progressive method and the Auction approach) may converge

to different local minimas of the Fréchet energy, which can be arbitrarily

distant from each other while being of similar quality (visually and quan-

titatively in terms of Fréchet energy). Overall, the distances between the

two outputs are comparable to the minimum distances observed within

each ensemble. This indicates that the barycenters resulting from the

two approaches are rather close, in particular relatively to the maximum

observed distances.

The Fréchet energy has been precisely evaluated with an estimation

of Wasserstein distances based on the Auction algorithm run until con-

vergence (γ = 0.01). While the actual values for this energy are not

specifically relevant (because of various data ranges), the ratio between

the two methods indicates that the local minima approximated by both

approaches are of comparable numerical quality, with a variation of 2% in

energy at most. Figure 5.7 provides a visual comparison of the converged

112 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Figure 5.7 – Visual comparison between the converged Wasserstein barycenters obtained

with the Auction barycenter algorithm [TMMH14]+[KMN16](on the back) and our

approach (front) for one cluster (Section 5.6.3) of each ensemble data set. Differences are

barely noticeable, and only for small persistence pairs.

Wasserstein barycenters obtained with the Auction barycenter alternative

[TMMH14]+[KMN16] and our method, for one cluster of each of our

data sets (Section 5.6.3). This figure shows that differences are barely no-

ticeable and only involve pairs with low persistence, which are often of

small interest in the applications.

Figure 5.8 compares the convergence rates of the Auction barycenter

[TMMH14]+[KMN16](red) to three variants of our framework: without

(blue) and with (orange) persistence progressivity and with time compu-

tation constraints (green, complete computations for increasing time con-

straints). It indicates that our approach based on Price Memorization and

single auction round (Sections 5.4.1 and 5.4.2, blue curve) already sub-

Table 5.3 – Comparison of Fréchet energy (Equation 5.3) at convergence between the

Auction barycenter method [TMMH14]+[KMN16] and our approach.

Data set N #D(fi)

Auction

[TMMH14]+[KMN16]
Ours Ratio

Starting Vortex (Figure 5.10) 45 14 112,787.0 112,642.0 1.00

Vortex Street (Figure 5.9) 12 36 415.1 412.5 0.99

Isabel (3D) (Figure 5.2) 12 1,337 2,395.6 2,337.1 0.98

Sea Surface Height (Figure 5.11) 48 1,379 7.2 7.1 0.99

Gaussians (Figure 5.5) 100 2,078 39.4 39.0 0.99

5.6. Results 113

Table 5.4 – Wasserstein distances (column W2) between the barycenters computed with

our approach and the Auction approach [TMMH14]+[KMN16], for all ensembles. For

comparison, the maximal and minimal distances observed between diagrams for each

ensemble are also reported.

Data set N #D(fi) Maximal distance Minimal distance W2

Starting Vortex 45 14 471.52 9.27 25.29

Vortex Street 12 36 25.07 0.02 1.38

Isabel (3D) 12 1,337 72.96 19.84 15.79

Sea Surface Height 48 1,379 2.18 0.76 0.69

Gaussians 100 2,078 5.30 1.52 0.75

Figure 5.8 – Comparison of the evolution of the Fréchet energy (log scale, Sea Sur-

face Height, maximum diagrams), for the Auction barycenter method [TMMH14]+

[KMN16](red) and 3 variants of our approach: without (blue) and with (orange) persis-

tence progressivity, and with time constraints (green). Persistence-driven progressivity

drastically accelerates convergence.

stantially accelerates convergence (the first iteration, dashed, is performed

with a large ε and thus induces a high energy). Interestingly, persistence-

driven progressivity (orange) provides the most important gains in con-

vergence speed. The number of Relaxation iterations is larger for our ap-

proach (43, orange) than for the Auction barycenter method (23, red), which

emphasizes the low computational effort of each of our iterations. Finally,

when the Auction barycenter method completed its first Relaxation iteration

(leftmost red point), our persistence-driven progressive algorithm already

achieved 80% of its iterations, resulting in a Fréchet energy almost twice

smaller. The quality of the barycenters obtained with the interruptible

version of our approach (Section 5.4.5) is illustrated in Figures 5.2 and 5.6

for varying time constraints. As predicted, features of decreasing persis-

tence progressively appear in the diagrams, while the most salient features

114 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Figure 5.9 – Clusters automatically identified by our topological clustering (tmax: 10 sec-

onds) on the Vortex Street dataset. From top to bottom: pointwise mean of each cluster.

Left: Centroids computed by our interruptible clustering algorithm. Right: Wasserstein

barycenters of the clusters, computed by our progressive algorithm run until convergence.

Differences are visually indistinguishable. Barycenter extrema are scaled in the domain

by persistence (spheres).

are accurately represented for very small constraints, allowing for reliable

estimations within interactive times (below a second).

5.6.3 Ensemble visual analysis with Topological Clustering

In the following, we systematically set a time constraint tmax of 10 sec-

onds. To facilitate the reading of the diagrams, each pair with a per-

sistence smaller than 10% of the function range is shown in transparent

white, to help visually discriminate salient features from noise. Figure 5.5

shows the clustering of the Gaussians ensemble by our approach. This

synthetic ensemble exemplifies the motivation for the geometrical lifting

(Section 2.4). The first and third clusters both contain a single Gaussian,

resulting in diagrams with a single persistent feature, but located in dras-

tically different areas of the domain M. Thus, the diagrams of these two

clusters would be indistinguishable for the clustering algorithm if geo-

metrical lifting was not considered. If feature location is important for

5.6. Results 115

Figure 5.10 – Clusters automatically identified by our topological clustering (tmax :

10s.) for the Starting Vortex dataset. Left insets (a, c): Centroids computed by our

interruptible clustering algorithm. Right insets (b, d): Wasserstein barycenters of the

clusters, computed by our progressive algorithm run until convergence. Differences are

visually indistinguishable. Top: pointwise mean of each cluster, with barycenter extrema

scaled by persistence (spheres).

the application, our approach can be adjusted thanks to geometrical lift-

ing (Section 2.4). For the Gaussians ensemble, this makes our clustering

approach compute the correct clustering. Moreover, taking the geometry

of the critical points into account allows us to represent inM the extrema

involved in the Wasserstein barycenters (spheres, scaled by persistence,

Figure 5.5) which allows user to have a visual feedback in the domain

of the features representative of the set of scalar fields. Geometrical lift-

ing is particularly important in applications where feature location bears a

meaning, such as the Isabel ensemble (Figure 5.2 (f)). For this example, our

clustering algorithm with geometrical lifting automatically identifies the

right clusters, corresponding to the three states of the hurricane (forma-

tion, drift and landfall). For the remaining examples, geometrical lifting

was not necessary (α = 0). For the Vortex Street ensemble (Figure 5.9), our

approach manages to automatically identify the correct clusters, precisely

corresponding to the distinct viscosity regimes found in the ensemble.

Note that the centroids computed by our topological clustering algorithm

with a time constraint of 10 seconds (left) are visually indistinguishable

from the Wasserstein barycenters of each cluster, computed after the fact

with our progressive algorithm run until convergence (right). This indi-

cates that the centroids provided by our topological clustering are reliable

and can be used to visually represent the features of interest in the en-

semble. In particular, for the Vortex Street example, these centroids enable

the clear identification of the number and salience of the vortices: pairs

116 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

which align horizontally and vertically respectively denote minima and

maxima of flow vorticity, which respectively correspond to clockwise and

counterclockwise vortices. Figure 5.10 presents our results on the Starting

Vortex, where our approach also automatically identifies the correct clus-

tering, corresponding to two wing configurations. In this example, the

difference in turbulence (number and strength of vortices) can be directly

and visually read from the centroids returned by our algorithm (insets).

Finally, Figure 5.11 shows our results for the Sea Surface Height, where our

topological clustering automatically identifies four clusters, correspond-

ing to the four seasons: winter (top left), spring (top right), summer (bot-

tom left), fall (bottom right). As shown in the insets, each season leads

to a visually distinct centroid diagram. In this example, as diagrams are

larger, differences between the interrupted centroids (left) and the con-

verged barycenters (right) become noticeable. However, these differences

only involve pairs of small persistence, whose contribution to the final

clustering reveal negligible in practice.

Overall, our approach provides the same clustering results than Fave-

lier et al. [FFST18]: the returned clusterings are correct for both ap-

proaches, for all of the above data sets. However, once the input per-

sistence diagrams are available, our algorithm computes within a time

constraint of ten seconds only, while the approach by Favelier et al. re-

quires up to hundreds of seconds (on the same hardware) to compute

intermediate representations (Persistence Maps) which are not needed in

our work.

5.7 Limitations

In our experiments, we focused on persistence diagrams which only in-

volve extrema, as these often directly translate into features of interest in

the applications. Although our approach can consider other types of per-

sistence pairs (e.g. saddle-saddle pairs in 3D), from our experience, the in-

terpretation of these structures is not obvious in practice and future work

is needed to improve the understanding of these pairs in the applications.

Thanks to the assignments computed by our algorithm, the extrema of the

output barycenter can be embedded in the original domain (Figure 5.5 to

5.11). However, in practice a given barycenter extremum can be potentially

assigned with extrema which are distant from each other in the ensemble

members, resulting in its placement at an in-between location which may

not be relevant for the application. Regarding the Fréchet energy, our

5.7. Limitations 117

Figure 5.11 – Clusters automatically identified by our topological clustering (tmax :

10s.) on the Sea Surface Height dataset (the greyscale represents a satellite view of

continents). From left to right, top to bottom: pointwise mean of each cluster with

barycenter extrema scaled by persistence (spheres). Left insets (a, c, e, g): Centroids

computed by our interruptible clustering algorithm. Right insets (b, d, f, h): Wasserstein

barycenters of the clusters, computed by our progressive algorithm run until convergence.

experiments confirm the proximity of our approximated barycenters to

actual local minima (Figure 5.7, Table 5.3). However, theoretical proximity

bounds to these minima are difficult to formulate and we leave this for fu-

ture work. Also, as it is the case for the original algorithm by Turner et al.

[TMMH14], there is no guarantee that our solutions are global minimizers.

For the clustering, we observed that the initialization of the k-means algo-

rithm had a major impact on its outcome but we found that the k-means++

heuristic [CKV13] provided excellent results in practice. Recent work on

the vectorization of persistence diagrams with theoretical guarantees on

cluster separability [RCL+
21] could be instrumental to obtain theoretical

guarantees on our clustering approach. Finally, when the geometrical lo-

cation of features in the domain has a meaning for the applications, the

geometrical lifting coefficient (Section 2.4) must be manually adjusted by

the user on a per application basis, which involves a trial and error pro-

cess. However, our interruptible approach greatly helps in this process, as

users can perform such adjustments at interactive rates.

118 Chapter 5. Progressive Wasserstein Barycenters of Persistence Diagrams

Figure 5.12 – Topological clustering of the Isabel ensemble dataset. Progressive per-

sistence diagrams (top, interrupted at 5% of computation) are used as an input to our

clustering approach (constrained to 1 second of computation). This time-constrained en-

semble clustering yields the same, correct classification (one color per cluster, from left to

right) as the one returned with the exact diagrams (bottom).

5.8 Overall time-constrained pipeline

Figure 5.12 illustrates the interest of our progressive barycenter compu-

tation for the control of the run time of batch-mode analysis pipelines.

We consider the Isabel ensemble [Sci04, TTK20] (12 members illustrating

3 hurricane behaviors: formation, drift and landfall, Figure 5.12, left to

right). The progressive approach detailed in Chapter 3 is used to generate

a persistence diagram for each member, and is interrupted at a predefined

threshold of computation time (Figure 5.12, top). Then, our progressive

clustering algorithm (Section 5.5) is used to cluster these diagrams (with

a time constraint of one second). Overall, this results in a topological

clustering pipeline whose time execution is fully controlled, from the fea-

ture extraction to their clustering. For reasonable computation thresholds

(5% in Figure 5.12), this pipeline returns the same, correct classification

(one color per cluster) as the one returned with the exact diagrams (bot-

tom). Additionally, the diagram centroids (large diagrams in the figure)

computed in the two cases are visually similar. This demonstrates that

the main trends of an ensemble in terms of features (the main clusters)

can still be estimated reliably, while additionally controlling the execution

time of the clustering pipeline.

5.9. Summary 119

5.9 Summary

In this chapter, we presented an algorithm for the progressive approxi-

mation of Wasserstein barycenters of Persistence diagrams, with applica-

tions to the visual analysis of ensemble data. Our approach revisits effi-

cient algorithms for Wasserstein distance approximation [Ber81, KMN16]

in order to specifically extend previous work on barycenter estimation

[TMMH14]. Our experiments showed that our strategy drastically accel-

erates convergence and reported an order of magnitude speedup against

previous work, while providing barycenters which are quantitatively and

visually comparable. The progressivity of our approach allows for the

definition of an interruptible algorithm, enabling the estimation of reliable

barycenters within interactive times. We presented an application to en-

semble data clustering, where the obtained centroid diagrams provided

key visual insights about the global feature trends of the ensemble. We

combined this approach with the progressive computation of persistence

diagrams presented in Chapter 3, to build an overall time-constrained data

analysis pipeline.

6An application use case

Contents

6.1 The VESTEC project . 123

6.1.1 Purpose . 123

6.1.2 Numerical simulations for urgent decision-making 124

6.1.3 Use cases . 125

6.1.4 Challenges . 128

6.2 Topological Data Analysis in VESTEC 129

6.2.1 Persistence diagrams for Data Reduction 129

6.2.2 In-Situ Computation . 130

6.2.3 Statistical Analysis . 131

6.3 Results: The Space Weather Use Case 131

6.3.1 In-Situ Computation of Persistence Diagrams 131

6.3.2 Wasserstein distances between diagrams 132

6.3.3 Topological Clustering . 133

6.4 Conclusion . 135

121

122 Chapter 6. An application use case

This chapter presents VESTEC, the European project in which this the-

sis took place and was funded. VESTEC stands for Visual Exploration

and Sampling for Extreme Computing. The goal of the project is to build a

platform dedicated to urgent supercomputing and interactive data analy-

sis in order to quickly support the decision-making process during urgent

catastrophic events, such as floods, fires, earthquakes, etc. On the practi-

cal side, it gave us the opportunity to work in collaboration with experts

in high-performance computing (HPC), data visualization, and especially

experts from applications fields. Part of the work presented in the pre-

vious chapters was integrated into the VESTEC data analysis workflow,

in interaction with HPC environments and in the context of in-situ data

analysis applied to real urgent applications.

6.1. The VESTEC project 123

6.1 The VESTEC project

6.1.1 Purpose

The purpose of the VESTEC project is to build a chain of simulation and

analysis tools to support the decision-making process in cases of catas-

trophic events. Examples of such disaters are floods, fires, epidemics,

earthquakes, . . . , e.g. events that require urgent organized responses. The

project focuses on three specific application cases, that are detailed in Sec-

tion 6.1.3. The VESTEC consortium is composed of academics and com-

panies, regrouping experts in high-performance computing, data analysis

and visualization, as well as experts in specific application fields (Sec-

tion 6.1.3). The different partners are:

• The DLR, the German Aerospace Center, coordinator of the project

and involved in the management of sensor data from satellites, as

well as the development of immersive visualization software.

• The Edinburgh Parallel Computing Center (EPCC), a supercomput-

ing center based at the University of Edinburgh.

• The Royal Institute of Technology (KTH), in Stockholm.

• Sorbonne Université, in Paris.

• Kitware, a company specialized in the development of Open-Source

visualization software, notably ParaView.

• Intel, developer of the Open-Source ray tracing engine OSPRay.

• The Fondazione Bruno Kessler (FBK), based in Trento, Italy.

• The Université Paul Sabatier in Toulouse, developer of the weather

forecast simulation code MESO-NH.

• Technosylva, a company based in California and Spain, and special-

ized in the development of software for wildfire analytics.

The complete system being built in the scope of the project combines a

high-performance computing (HPC) environment to perform highly par-

allelized numerical simulations, together with data analysis tools and vi-

sualization solutions to explore the results. An illustration of the system

architecture is showed in Figure 6.1.

124 Chapter 6. An application use case

Figure 6.1 – Simplified architecture of the VESTEC system

6.1.2 Numerical simulations for urgent decision-making

Concretely, given a catastrophic situation, this system would give the

opportunity to the decision makers (first responders, public health ana-

lysts, . . .) to launch ensembles of numerical simulations on an available

HPC cluster. Simulating a disaster enables to apprehend the possible out-

comes of the phenomenon, as well as the efficiency of potential responses.

In order to get the most insight, the space of input parameters of the simu-

lations is typically densely explored, as some parameters of the simulation

might be subject to uncertainty. For multi-physics, multi-parameters sim-

ulations, this generates a substantial ensemble of outputs. Trend analysis

then must be performed to try and predict the most likely scenarios. The

analysis of the results would give hints about the best strategic response

to a disaster, in order to minimize damage and casualties.

In the case of wildfires, which is one of the application use cases of

the VESTEC project, the decision makers are typically the firefighters in

charge of containing the fire, ordering evacuations and assisting the vic-

tims. As firefighters get informed that a fire has begun to spread some-

where, they can launch en ensemble of simulations on an available HPC

cluster somewhere in order to try and predict its evolution. The simula-

tions take localization data into account, including information about the

topography and vegetation of the region. They are also backed up with

real time sensor data, including satellite imagery to follow the evolution

of the fire, and by weather forecast simulators. Different set of parameters

are used for the simulation runs, in order to predict the evolution of the

simulation under different circumstances, for instance different responses

6.1. The VESTEC project 125

from the firefighters, changes in the wind direction, or the potential start

of neighboring fires lighted by flying embers. The combination of these

different parameters generates a substantial quantity of outputs. Data

analysis is then performed to compute the likelihood of different scenar-

ios, and identify main trends in the data. Then, visualization techniques

are used to adequately convey the results to the end user, a fire analyst

or a chief firefighter, with the aim of identifying the optimal response to

the fire, and the highest risk regions that would need to be evacuated.

The urgency of the situation requires that the whole pipeline be executed

quickly, or at least be able to provide quick exploitable results in a first

approximation.

6.1.3 Use cases

The VESTEC project is developed around three use cases: wildfire,

mosquito-borne diseases , and space weather analysis.

Wildfire Analysis

Wildfire analysis has proven itself to be a key study field nowadays, as

more extreme fires are observed each year all over the globe. These events,

fueled by severe droughts induced by climate change, are becoming more

and more dreadful. For instance, since the 1970s, California experienced

more than a fivefold increase in annual wildfire extent [WAG+
19]. Such

large blazes cause tremendous material damage and numerous casualties,

but they also constitute true ecological and environmental disasters. The

Australian bushfires of 2019-2020 were deemed « among the worst wildlife

disasters in modern history » in a report commissioned by the World Wide

Fun for Nature, with over 3 billions animals killed or displaced (not count-

ing invertebrates). In 2019, 9.060 km2 of the Amazon rain forest were de-

stroyed by wildfire, with drastic environmental impact on climate change

due to gas emissions and destruction of vegetation.

In the fight against wildfires, prevention is key. However in the event

where the disaster already started, numerical simulations can help a great

deal to predict the evolution of the fire, in order to help organize evac-

uations or plan the response of firefighters. Numerical simulations can

notably indicate whether the fire is likely to reach a crucial location, such

as a natural reserve or a hospital, or whether a localized response from the

firefighters is likely to stop the fire spreading. Wildfires can evolve rapidly,

and their evolution is subject to changes of winds, to the topography and

126 Chapter 6. An application use case

Figure 6.2 – Example of a dataset from the wildfire use case. From left to right: localiza-

tion of the fire (California), the corresponding scalar field (time of arrival of the fire), and

the associated persistence diagram.

vegetation type, and to the response of firefighters. This motivates the use

of highly parallelized simulation codes and high-performance data analy-

sis tools to quickly explore different outcomes, in a context of urgency.

Technosylva is a company specialized in wildfire simulation and anal-

ysis. They commercialize a wildfire analysis software and service and

work with firefighting departments, notably the California Department

of Forestry and Fire Protection (CAL FIRE). They are responsible for the

wildfire use case in VESTEC. Figure 6.2 shows an example of a typical

dataset from this use case, generated with their software.

Mosquito-borne diseases

The repercussions of the COVID-19 pandemic has shown the importance

of monitoring outbreaks of diseases and particularly of planning ahead

for emergency responses. One of the most striking impressions of the

pandemic was the feeling that responses were always a step behind the

disease’s evolution. Indeed, the long incubation period of the coronavirus

disease made it hard to apprehend and counter its outbreak.

In the scope of the VESTEC project, the second use case is focused

on the analysis of mosquito-borne diseases. In the recent years, Europe

has seen an increasing number of cases of potent viral diseases carried by

mosquitoes, such as Chikungunya, Dengue, or Zika. Two major Chikun-

gunya outbreaks took place in Italy in 2007 and 2017 [CRM+
20]. In

2015, a large Zika virus outbreak also started in Brazil and propagated

through both Americas [ZSC+
17], raising notable concerns about the 2016

Olympics Games in Rio de Janeiro. In Europe, the main culprit for the

propagation of such diseases is the Tiger mosquito (Aedes albopictus), an

6.1. The VESTEC project 127

Figure 6.3 – Example of a dataset from the mosquito-borne disease use case. The numer-

ical simulation provides the Basic Reproduction Number of the epidemy, noted R0, an

epidemiological indicator which represents the expected number of secondary infections

generated by one infectious individual. From left to right: the scalar field R0 computed

for the Zika virus disease in the region of Rome, and the associated persistence diagram.

invasive mosquito species whose presence in southern Europe is grad-

ually increasing. The Tiger mosquito can carry several diseases that it

transmits from human to human. Because of its adaptation to urban areas

and to colder climates, the population of Ae. albopictus is expected to dras-

tically increase in the coming decades. Climate-change projections also

suggest that this species, along with other species of disease-transmitting

mosquito, will colonize new territories in the coming years [ADB+
16],

which makes the analysis of the propagation of mosquito-borne diseases

an important topic. Numerical simulations are a natural and viable option

to try and predict the propagation of such diseases and avoid an outbreak.

The Fondazione Bruno Kessler (FBK) is one of the top research insti-

tutes in Italy. The VESTEC partners from FBK are experts in the modeling

and simulation of the spreading of epidemics. Since the start of the coro-

navirus crisis, they are notably in charge of running simulations of the

disease evolution to assist the Italian government in taking public health

decisions. They are responsible for the mosquito-borne diseases use case.

Figure 6.3 shows an example of a typical dataset from this use case.

Space Weather

The term space weather describes the physical phenomena taking place

in the Solar system, and particularly around the Earth, with emphasis

on magnetic and radiative phenomena. Besides their theoretical interest,

such events can have disastrous consequences. The electronic components

presents in communication satellites are indeed particularly sensitive to

geomagnetic storms, which are disturbances of the Earth’s magnetic field

128 Chapter 6. An application use case

Figure 6.4 – Example of a dataset from the space weather use case, a numerical simulation

of magnetic reconnection. From left to right: the scalar field (magnitude of the magnetic

field) and the associated persistence diagram.

caused by solar winds interacting with the magnetosphere. Understand-

ing space weather is thus of great importance to predict and circumvent

satellite failures. In VESTEC, space weather is studied through the analy-

sis of magnetic reconnection events occurring in the magnetosphere. Mag-

netic reconnection is a small-scale phenomenon that takes place in magne-

tized plasmas, where huge quantities of energy are converted from mag-

netic energy to radiative energy, effectively creating solar flares and mag-

netic storms, and thus potentially endangering satellites, astronauts, but

also even power grids and pipelines on Earth [HC20]. Due to the complex-

ity of the phenomenon, only standard theoric simulations are performed

for the moment. Ensemble of 3D simulations of magnetic reconnection are

performed under several different conditions.

In VESTEC, the referent partners on the space weather use case are

physical simulation experts from the Royal Institute of Stockholm (KTH).

Figure 6.4 shows an example of a typical dataset from this use case.

6.1.4 Challenges

A system such as VESTEC, dedicated to high performance computing for

urgent decision-making, faces various challenges. First, on the simulation

side, the system must be flexible enough for the user to be able to precisely

and rapidly describe the ensemble of simulations to launch, and to run

them on an available HPC cluster. On the other hand, the system would

need to be general enough to support more than one application case, with

different needs. As the end user is unlikely to be a simulation and analysis

expert, specific workflows must be predefined for each application.

Data management in general is one of the main challenges to over-

come. Ensembles of multi-parameter, time-varying simulations produce a

6.2. Topological Data Analysis in VESTEC 129

substantial quantity of outputs. Writing such data to disk, or transferring

data for analysis or visualization can easily become a bottleneck of the

urgent computing pipeline. Simulation codes are also interfaced with live

sensor data that have to be managed accordingly.

Another point of importance is the interactivity of the approach. In this

context of urgency, it is important that users should get feedback from the

simulation and the data analysis progress, in order to start their interpre-

tation process at the earliest. Progressive data analysis methods are thus

of interest for such applications, where execution times and computing

resources have to be optimized.

6.2 Topological Data Analysis in VESTEC

Our work in the project mainly dealt with the data analysis part of the

VESTEC pipeline, showed in red in Figure 6.1. Specifically, in order to

perform a trend analysis of the simulations results, we need to be able to

compare different results, and perform statistical tasks such as clustering

operations. Topological methods provide a great asset for this application

case, as the main structures of the data are encoded in light and robust

representations, which facilitates data management.

6.2.1 Persistence diagrams for Data Reduction

Topological Data Analysis was used in the project as a mean to perform

data reduction on the large quantities of outputs generated by ensemble

of numerical simulations. The simulations from the three use cases are

all time-varying, and they supply several scalar fields at each time steps.

As mentioned before, this produces numerous scalar fields to analyze and

possibly store for visualization.

The persistence diagram was chosen in the project as the main topo-

logical representation to represent each scalar field. This choice was moti-

vated by the fact that persistence diagrams are lightweight representations

of the features of interest in a scalar field and are stable to additive noise,

which makes them great candidate representations to perform data reduc-

tion. Additionally, stable and well-understood metrics exist for these rep-

resentations, which is needed to develop statistical analysis methods. A

persistence diagram was therefore computed on each output scalar field

of the simulation step. This step effectively reduces the data size by a

factor 100 for scalar fields from the wildfire and mosquito-borne disease

130 Chapter 6. An application use case

use cases, and a factor of almost 1000 for 3D scalar fields from the space

weather use case. Discussions were needed with the experts from each

use case to identify which scalar field was relevant for topological analy-

sis, and how to preprocess the raw data for each use case.

6.2.2 In-Situ Computation

The computation of persistence diagrams is done using the Topology

ToolKit (TTK) [TFL+
17], on the same HPC environment where simula-

tions are run (Figure 6.1). In order to limit data management, the com-

putation takes place in-situ. This means that persistence diagrams are

computed and stored on-the-fly, without having to store to disk the actual

simulation data, which can be discarded afterwards.

TTK leverages the VTK/ParaView software ecosystem on which it is

based to support in-situ computation with Catalyst [ABG+
15]. Catalyst

is an API designed for the developers of simulation codes, which enables

them to make the internal data of the simulation accessible, without disk

storage, in the form of VTK objects, in place, at run-time. Catalyst can be

configured when the simulation is run to apply specific data analysis and

visualization pipelines on each of the time steps generated by the simu-

lation. Typically, Catalyst can be configured to execute a python script

at user-defined time steps of the simulation, to run an analysis pipeline

directly from the simulation code. Note that the simulation code must

implement an interface with Catalyst, to make its internal generated data

available in the form of VTK objects. The output of the analysis pipeline

can be, itself, stored to disk if desired.

Thus, persistence diagrams are computed in-situ using Catalyst for

different time steps of the simulation and stored in CINEMA databases,

which are SQL-type databases of VTK files. This enables to express in a

post-hoc post-processing SQL type queries for the inspection of specific

diagrams (for a user defined selection of time steps, variables, etc.). Addi-

tionally, it may be desirable for some applications to store selected scalar

fields in a non-reduced way, at key time steps of the simulation, to sup-

port further interactive manipulation in a post-process, or for visualization

purposes. To cope with data size, a lossy topology-preserving compressor

[SPCT18a] can be called through Catalyst before storing the scalar field to

disk.

6.3. Results: The Space Weather Use Case 131

6.2.3 Statistical Analysis

Once all simulations have terminated, the persistence diagrams corre-

sponding to each time step have been computed and stored in CINEMA

databases. They are then used to perform statistical analysis tasks upon

user request, such as comparing the evolution of different simulation runs

based on the evolution of the topology of the scalar field. This analysis is

run in a post-processing step, also on the HPC environment.

The tools used to perform such tasks are the computation of distances,

barycenters and clusters of persistence diagrams. Wasserstein distances

between diagrams are efficiently approximated using the Auction algo-

rithm (Section 5.2.1). Barycenters and clusters of persistence diagrams are

computed using our progressive approach (Chapter 5).

6.3 Results: The Space Weather Use Case

In this section, we demonstrate the data analysis pipeline for the space

weather use case , which is the most advanced use case in the VESTEC

project at the time of the writing of this chapter.

6.3.1 In-Situ Computation of Persistence Diagrams

The magnetic reconnection events in space weather are simulated using

iPIC3D [MLRu10], a widely-used, massively parallel Particle-In-Cell (PIC)

simulation code developed at KTH. In the context of VESTEC, this code

was interfaced with Catalyst for the in-situ computation of persistence

diagrams. To experiment with this use case, an ensemble of four simu-

lation runs were launched on the same 3-dimensional domain: a box of

dimensions 128× 64× 64, and during 2500 time steps. Different sets of

input parameters were used, with variations in the initial magnetic field

and in the type of particles present in the domain. The persistence di-

agram of the magnitude of the magnetic field is computed for each run

and each time step, resulting in an output ensemble of 10, 000 persistence

diagrams, stored in a cinema database. They can then be accessed in a

post-processing step through SQL type queries. 600 of these diagrams

corresponding to the late time steps are represented in Figure 6.5.

132 Chapter 6. An application use case

Figure 6.5 – Persistence diagrams computed in-situ during numerical simulation. Di-

agrams from the last 300 time steps are represented, one every two time steps. Colors

denote the corresponding simulation runs.

Figure 6.6 – Wasserstein distance matrix between persistence diagrams corresponding to

the late time steps of the four simulation runs (depicted in Figure 6.5).

6.3.2 Wasserstein distances between diagrams

As mentioned before, statistical analysis is performed in a post-processing

step (not in-situ) on the ensemble of persistence diagrams. To begin

with, persistence diagrams can be compared with the computation of the

Wasserstein distance (Section 2.4). The matrix of Wasserstein distances

between diagrams (Figure 6.6) gives visual hints about the difference be-

tween runs. The matrix correctly captures the different simulation runs,

with low values of the distance (yellow) between diagrams within runs.

On the contrary, diagrams from different runs are more distant from one

another (high values, in green to light blue). The visualization of the ma-

trix also hints that the second and third simulations runs are similar, at

least on the late time steps, which suggests the presence of three main

trends in the data.

Additionally, the Wasserstein distance matrix can be used to embed

the ensemble of persistence diagrams as a 3D point cloud. This gives

a good representation of the similarity between different simulation runs.

This step of dimension reduction is done using Multi-Dimensional Scaling

(MDS), which is available in TTK through the scikit learn python package.

Figure 6.7 gives an example of such a visualization for the four runs of

6.3. Results: The Space Weather Use Case 133

Figure 6.7 – Visualization of the evolution of the simulation runs using MDS on the

Wasserstein distance matrix between persistence diagrams. Each sphere corresponds to a

persistence diagram, represented for the four simulation runs (colors), one every two time

steps. Top left: visualization of the exact persistence diagrams. Top right: approximated

diagrams with a 5% Bottleneck error. Bottom: example of a compressed scalar field in the

late time steps for each one of the simulation runs.

the space weather simulations. This representation shows hows the runs

exhibit different behaviors past a certain point in time. Although the per-

sistence diagrams are similar at the beginning of the simulation (bottom

left of each curve), the different runs promptly start to diverge. On the

right, the same visualization is showed using our approximated persis-

tence diagrams (Chapter 4) with a Bottleneck error of 5% instead of the

exact diagrams. The approximation of persistence diagrams enables us to

get an exploitable approximated representation of the ensemble of simu-

lation runs, while gaining time during their computation.

6.3.3 Topological Clustering

The persistence diagrams computed during the simulation step are also

used to perform clustering operations. Our progressive clustering algo-

rithm (Section 5.5) is used in VESTEC, as it supports time constraints and

it provides centroids diagrams, representative of the repartition of topo-

logical features within each cluster. Figure 6.8 shows the result of our

topological clustering algorithm applied to the space weather use case.

In this illustration, the 3D representation of the ensemble of simulation

runs is augmented with the result of the clustering, performed on the late

diagrams. With k = 4 (top row), our method correctly retrieves the clas-

134 Chapter 6. An application use case

Figure 6.8 – Topological clustering performed on the persistence diagrams on the late

time steps with k = 4 (top row) and k = 3 (bottom row), together with the resulting

centroids. On the left: exact persistence diagrams. On the right, the diagrams were

approximated with a 5% maximal Bottleneck error.

sification corresponding to the four different simulation runs. With k = 3

(bottom row), the second and third simulation runs are clustered together,

which was hinted by the visualization of the Wasserstein distance ma-

trix (Figure 6.6). In this case, the approximation of persistence diagrams

with a 5% tolerance on the Bottleneck error performs as well as the ex-

act diagrams. In particular, the centroids found in the two cases are very

similar. They provide visual summaries of the topological features inside

each cluster, and can be used to compute distances between clusters, or

estimate the variance within each cluster to support the trend analysis

process.

In this example, a simple hierarchical clustering run on the L2 distance

matrix between members of the ensemble also yields a correct classifica-

tion. However it requires to write and store to disc the whole dataset for

each timestep, which becomes impracticable for the large-scale data sets

considered in VESTEC. In contrast, our approach only requires to store

and transfer the persistence diagrans, which are over 1000 times lighter in

this case than the input data.

6.4. Conclusion 135

6.4 Conclusion

The work developed in this thesis is rather adapted to the expectations

of a system such as the one built in VESTEC. Topological Data Analysis

(TDA) is a great asset to reduce large ensembles of data and only consider

the prominent features, encoded in lightweight data structures. Moreover,

our focus on the development of progressive and approximate methods

for TDA satisfies the need for interactivity in a system dedicated to urgent

computing.

Our algorithms were integrated in the VESTEC prototype, and show

promising results on data from the related use cases. Future work is still

needed to provide more advanced statistical indicators on ensembles of

persistence diagrams, in order to perform trend analysis on the result of

large ensembles of simulations. For instance, computing deviations and

variances between clusters of persistence diagrams could help to quantify

the uncertainties of different simulation runs, although the relevance of

such indicators is likely to depend on the application use case.

In 2022, the VESTEC project is expected to enter its last phase, in-

cluding the final execution of the pre-identified use cases in collaboration

with domain experts. This final step of the project will help gather user

feedback and evaluate the impact of the progressive computations on the

overall data exploration [MSA+
19]. A journal paper is currently being

prepared in collaboration with all the partners of the project, in order to

present in depths the context and the outcomes of VESTEC.

7Conclusion

In this thesis we worked towards the development of progressive meth-

ods for the topological analysis of scalar data. The aim of the pro-

gressivity is to offer an interactive visual exploration of the topology of

the data, and to control the time and computing resource consumption

of the data analysis and visualization process. Our work was integrated

in a toolchain developed in the context of the VESTEC project, with the

purpose of supporting the decision-making process in urgent catastrophic

situations, thanks to interactive high-performance computing and interac-

tive data analysis and visualization.

7.1 Summary of contributions

The contributions of our work span different aspects of the data analy-

sis process, from the computation of reduced topological representation

to the analysis and visualization of these representations through sta-

tistical analysis tasks. All the techniques presented in this thesis were

implemented as open-source software and integrated into the Topology

ToolKit [TFL+
17].

Progressive computation of topological representations

In a first effort towards the computation of progressive topological repre-

sentation of scalar data, we introduced in Chapter 3 an approach based

on a multiresolution hierarchy of the data. Our edge-nested hierarchies

enable the fast identification of topologically invariant vertices, for which

topological information can be deduced without additional computation

at each level of the hierarchy. This enables the definition of efficient coarse-

to-fine topological algorithms for the extraction of the critical points, and

137

138 Chapter 7. Conclusion

the computation of the extremum-saddle persistence diagram of a scalar

field. Experiments performed on diverse samples of data sets show that

our progressive methods are on average even faster that non-progressive

reference methods, with an average speed up of 1.8 for the critical points,

and 1.6 for the persistence diagram. Yet, they produce a collection of

intermediate outputs in addition to the exact result, which enables a con-

tinuous visual feedback along the computation. We showed that upon

interruption, our approach provides meaningful partial results that are

useful for the visual analysis of the topology of the data, in a fraction of

the total computation cost. Although no theoretical guarantees are pro-

vided on the quality of the interrupted results, we found that they are in

practice good approximations of the exact result. We demonstrated this

point with quantitative studies on an extensive collection of data sets. In

particular, we showed that the Wasserstein distance of the intermediate

persistence diagram to the exact result is monotonically decreasing in the

large majority of cases.

Approximation of persistence Diagrams with Guarantees

In order to address a limitation of our progressive computation of persis-

tence diagrams, the lack of guarantees on the quality of the interrupted

results, we developed an approximation scheme for persistence diagrams

that provide strong guarantees on the result (presented in Chapter 4).

Specifically, the Bottleneck distance between our estimation and the ex-

act result is controlled. Our approach is based on the same edge-nested

multiresolution hierarchy used in the progressive computation of the per-

sistence diagram. We artificially increase the number of topologically in-

variant vertices with local simplifications of the scalar field, thus reducing

the total computation time by 18% with a mild relative Bottleneck dis-

tance of 5%. This method is particularly relevant to approximate the per-

sistence diagram on noisy data sets: we obtained a reduction of 48% of

the computation time for our largest, noisiest data set. In addition to the

persistence diagram estimation, we provide visual hints of the uncertainty

of our approximation, and a scalar field that correspond to the approxi-

mated diagram. Our approximation method is finer than a naive baseline

alternative with the same guarantees, being a lot more precise in terms

of the L2-Wasserstein metrics on the diagrams and the L2 metrics on the

approximated fields.

7.2. Discussion 139

Progressive barycenters of persistence diagrams

On the analysis of reduced topological representations, we focused on the

problem of computing an average persistence diagram in an ensemble of

input persistence diagrams. We introduced in Chapter 5 a new progres-

sive approach for the efficient computation of the Wasserstein barycenter

of a set of persistence diagrams, a notoriously computationally intensive

task. We revisited the Auction algorithm for the efficient estimation of

the Wasserstein distance between diagrams, and an existing algorithm for

the estimation of a Wasserstein barycenter of diagrams. We introduced

progressivity in the approach at two levels: a progressive increase in the

accuracy of our computation, and a progressive increase in the number of

persistent features in the output diagram. This results in a method that

is an order of magnitude faster on average that the combination of the

fastest existing techniques while offering estimations of similar quality.

It is also interruptible and time-constrained, providing meaningful esti-

mations of the barycenters in interactive times. Finally, we revisited the

k-means algorithm to introduce an application of our method to ensemble

clustering. Our algorithm progressively computes, within user-defined ex-

ecution time contraints, meaningful clusters of ensemble data along with

their barycenter diagram.

7.2 Discussion

Limitations and discussions about our different contributions were al-

ready presented in the dedicated chapters. However we would like to

highlight hereafter some additional interesting points about the design of

progressive approaches in topological data analysis.

A key aspect to the progressivity is the production of intermediate,

interpretable partial results. The quality of these intermediate results are

of crucial importance. In other words, the quality of the progressive ap-

proach highly depends on the path that it takes to solve the computation.

In order to evaluate this quality, it is best to provide theoretical guarantees

on the intermediate results, but that is no easy task from our experience.

The work detailed in Chapter 3 lacks theoretical guarantees on the inter-

rupted results of the progressive computation of the critical points and

persistence diagrams, which is the main limitation of our approach. In

that case, we provided empirical results to demonstrate their utility for

the visual analysis of the topology of data. In the same way, no theoret-

140 Chapter 7. Conclusion

ical guarantee is provided on our interrupted Wasserstein barycenters of

persistence diagrams (Chapter 5), and we also provide empirical evidence

that they correctly converge towards a meaningful result. In contrast, we

focused in the development of our approximation approach for the persis-

tence diagram (Chapter 4) on delivering strong guarantees on the result.

Unfortunately, although we reuse our progressive hierarchical data repre-

sentation, our method is not progressive as the hierarchy has to be pro-

cessed until the very last level to yield guarantees. Future work is needed

to be able to efficiently resume the computation, in order to progressively

decrease the error threshold for instance.

We already greatly detailed the advantages of progressive methods for

the purposes of interactivity and computing resources optimization. How-

ever, an important lesson from our work is the idea that progressive ap-

proaches can sometimes be designed to be faster that their non-progressive

counterpart. Indeed, for the progressive computation of critical points de-

tailed in Chapter 3, the use of a progressive hierarchical representation of

the data enables the identification of the topologically invariant vertices,

which allows shortcuts in the computation. In the same manner, the pro-

gressive computation of the Wasserstein barycenter enables to compute

matchings between diagrams that are drastically less costly, and gears the

convergence of the barycenter. The common idea to these two examples

is that having computed a first approximation of our result can enable

the identification of shortcuts in the later computation. Thus, refining

an approximation along progressive updates can sometimes be faster that

computing directly the exact result. This point was surprising to us (and

to some extent, to reviewers as well), and may not be obvious to grasp

at first. In our opinion, this observation should drive us to try to con-

sider progressive ways of solving issues in science, and especially in data

analysis and visualization.

Finally, we would like to highlight the difficulty of progressively refin-

ing global topological structures. In Chapter 3, we managed to efficiently

update the progressive critical points from a level of the hierarchy to an-

other. Critical points are indeed characterized locally, which means that

a localized change in the data occurring as the resolution increases only

entails minor recomputation. In contrast, we were not able to efficiently

maintain and update a data structure only a bit more complex such as

integral lines, as mentioned in Section 3.4.2. As a result, our approach for

the persistence diagram computation is not completely progressive. More

7.3. Perspectives 141

global structures, such as the merge tree or the Morse-Smale complex,

would represent an even greater challenge.

7.3 Perspectives

Progressive approaches with guarantees

A natural perspective for future work involves the development of pro-

gressive approaches with theoretical guarantees on the quality of the inter-

mediate results, and the convergence of the method. We started working

towards this goal with the introduction of our approximation methods for

persistence diagrams with guarantees on the Bottleneck error. We would

like to find ways to build a full progressive computation method with the

same guarantees, and to work up to error bounds in terms of different

metrics, notably the Wasserstein distance to the exact result.

Progressive complete data analysis pipelines

Although we presented an example of an overall time-constrained data

analysis pipeline (Section 5.8) combining our time-constrained diagram

estimation (Section 3.4) with our time-constrained clustering computation

(Section 5.5), we have not developed overall progressive analysis pipelines.

In theory, our progressive barycenter computation could manage progres-

sive inputs, where each input persistence diagram would be streamed,

starting from the highest persistent pairs to the lowest. Unfortunately,

our progressive approach for the persistence diagram computation is not

guaranteed to deliver diagrams in this fashion. In the future, we would

like to seek ways to combine progressive approaches to build complete

progressive topological data analysis pipelines.

Since a progressive pipeline could be given a time-budget constraint

and still be resumed afterwards if needed, we would also like to investi-

gate how such preemptable data analysis methods could help for optimiz-

ing scheduling policies in high-performance environments, where data

analysis is often run at the same time as data production and where the

allocation of computation resources need to be finely optimized.

Generalization to other topological abstractions

In general, we firmly believe that the development of progressive and

approximative approaches for data analysis and visualization is an im-

portant and exciting research direction. Indeed, these methods offer a

142 Chapter 7. Conclusion

versatile solution to the challenge of processing data of ever-increasing

size and complexity, in a context where the saving of time and power re-

sources is confirmed to be an important stake for the future. They are

especially relevant in the field of Topological Data Analysis, as most of

the computational workload is typically spent in practice on the capture

of small scale features (as illustrated throughout our work, for instance in

Figure 4.1), whereas they usually are less relevant in the applications, and

post-process simplification techniques are often applied to eliminate them

anyway. In this context, a natural and thrilling avenue for future work

would be the development of progressive and approximative methods to

revisit existing topological data representations (merge trees, Reeb graphs,

Morse-Smale complexes) in the light of progressive and degraded compu-

tation. In that perspective, the generalization of topologically invariant

vertices to Discrete Morse Theory [For98] looks promising.

7.4 Final Word

This thesis was started in early 2018, at the beginning of the VESTEC

project. At the time, I remember thinking that the project painted quite

an apocalyptic picture of the future: fires destroying lands, and satellites

falling from the skies, as mosquitoes roam over the Earth, transmitting

deadly diseases. Three years later, as I write this manuscript, it almost

looks like a bad joke. It has been almost two years since the beginning of

the coronavirus disease pandemic, and it continues to dramatically impact

the world. This last summer only, the effects of man-made climate change

have showed in unprecedented ways. Enormous fires ravaged lands in

Greece, Turkey, California, Canada, Siberia, and Central Africa. Deadly

unprecedented floods took place in Europe and the United States.

Unfortunately, this motivates once more the relevance of urgent com-

puting and the development of interactive techniques for the analysis and

visualization of large ensembles of data. Once more, I believe that a key

stake for the future would be to find approximate and progressive ways

to solve these issues, in order to reduce the time and power consumption

of such algorithms. While this was not the subject of this thesis, and al-

though it is hard to quantify, the environmental impact of data sciences

should in my opinion become an important topic and could drive research

towards the development of low-impact algorithms and hardware.

AAppendix: Data List

This appendix introduces an extensive list of the datasets used in this

thesis, with information about the type of scalar data considered, its

origin, and the interpretation of the salient features of the data. All the

data has been made available through the Github repository related to

each chapter:

• https://github.com/julesvidal/progressive-topology

• https://github.com/julesvidal/persistence-diagram-approximation

• https://github.com/julesvidal/wasserstein-pd-barycenter

Single-field data (Chapters 3 and 4)

AT:
Simulation of the electronic density on the adhenine-

thymine molecular complex (Nucleobases A and T of

DNA). The persistent maxima capture the atoms of the

molecules.

Regular grid of dimensions 177× 95× 48.

SeaSurfaceHeight:

Height of the sea surface acquired through altimetry satel-

lites. The features of interest are the centers of the eddies

in the oceans, that are characterized by persistent height

extrema.

2D regular grid of dimensions 1440× 720.

EthaneDiol:
Simulation of the electronic density in an ethanediol

molecule. The persistent maxima capture the atoms of the

molecules.

Regular grid of dimensions 115× 116× 134.

143

https://github.com/julesvidal/progressive-topology
https://github.com/julesvidal/persistence-diagram-approximation
https://github.com/julesvidal/wasserstein-pd-barycenter

144 Appendix A. Appendix: Data List

Hydrogen:

Simulation of the spatial probability distribution of the

electron in an hydrogen atom. The persistent maxima cap-

ture the localization of the main electronic orbitals.

Regular grid of dimensions 128× 128× 128.

From [Kla20].

Isabel:

Magnitude of the wind velocity in a simulation of the hur-

ricane Isabel, that hit the east coast of the USA in 2003.

High-persistence maxima capture the zones of high wind

velocity, typically the eye-wall of the hurricane.

Regular grid of dimensions 250× 250× 50.

Combustion: Pressure simulation of a gas in a combustion chamber.

Regular grid of dimensions 170× 160× 140.

Boat:
Simulation of the aerodynamics of a boat. Persistent ex-

trema of the wind velocity capture the turbulent structures

forming behind the boat.

Regular grid of dimensions 256× 256× 128.

Random: Synthetic dataset. Random field on a cube.

Regular grid of dimensions: 250× 250× 250.

MinMax: Synthetic dataset. Elevation function on a cube.

Regular grid of dimensions: 255× 255× 255.

145

Aneurism:

X-ray scan of the arteries of the right half of a human

head. A contrast agent was injected into the blood and

an aneurism is present.

Regular grid of dimensions 256× 256× 256.

From [Kla20].

Foot:

CT-scan of a human foot. The considered scalar field is the

material density. Salient extrema correspond to bones and

allow to capture the whole toes or different phalanges.

Regular grid of dimensions 256× 256× 256.

From [TTK20].

Heptane:
Pressure simulation of a jet of heptane gas undergoing

combustion.

Regular grid of dimensions 302× 302× 302.

From [Kla20].

Backpack:

Density in the CT-scan of a backpack filled with items.

Persistent maximas capture the localization of items in the

bag.

Regular grid of dimensions 512× 512× 373.

From [Kla20].

Ensemble data (Chapter 5)

Starting Vortex:

Simulated ensemble data set of the aerodynamics of a

plane wing, for two distinct wing configurations. The data

set contains 6 runs of a 2D simulation of a vortex behind

the wing in each case. The considered scalar field is the

orhogonal component of the air velocity curl. Vortices are

captured by the extrema of the field.

Regular grid of dimensions 1500× 1000

146 Appendix A. Appendix: Data List

Vortex Street:

Ensemble dataset containing 45 runs of a 2D simulation

of flow turbulence behind an obstacle (Von Karman vortex

street). The scalar field is the orthogonal component of the

velocity curl, for 5 fluids of different viscosity, with 9 runs

per fluid. Salient extrema of the field capture the center of

vortices.

Regular grid of dimensions 300× 100

Isabel:

Simulation of the Isabel hurricane. The ensemble contains

12 time steps of the simulation showing 3 different phases

of the hurricane (formation, drift, and landfall), with 4 time

steps per phase. The considered scalar field is the magni-

tude of the wind velocity. Salient maxima characterize the

zones of high wind velocity, typically the eye-wall of the

hurricane.

Regular grid of dimensions 250× 250× 50.

SeaSurfaceHeight:

Climate dataset showing the height of the sea surface,

acquired by satellite at different moments of a year. 12

observations were made for each season, respectively in

April, July, October and December, totalizing 48 members.

Salient extrema of the surface height characterize the ed-

dies.

Regular grid of dimensions 1440× 720.

Gaussians:

Synthetic ensemble data set containing 100 2D noisy mem-

bers, classified in 3 clusters containing respectively 25, 50

and 25 members. Each cluster exhibits a different pattern

of Gaussians, captured by the persistent maximas of the

field.

Regular grid of dimensions 512× 512

Bibliography

[AAPW18] Keri Anderson, Jeffrey Anderson, Sourabh Palande, and Bei

Wang. Topological data analysis of functional MRI connec-

tivity in time and space domains. In MICCAI Workshop on

Connectomics in NeuroImaging, 2018. (Cited page 5.)

[ABG+
15] Utkarsh Ayachit, Andrew C. Bauer, Berk Geveci, Patrick

O’Leary, Kenneth Moreland, Nathan Fabian, and Jeffrey

Mauldin. Paraview catalyst: Enabling in situ data analysis

and visualization. In ISAV, 2015. (Cited pages 90 and 130.)

[ACE+
17] Henry Adams, Sofya Chepushtanova, Tegan Emerson, Eric

Hanson, Michael Kirby, Francis Motta, Rachel Neville,

Chris Peterson, Patrick Shipman, and Lori Ziegelmeier. Per-

sistence Images: A Stable Vector Representation of Persis-

tent Homology. Journal of Machine Learning Research, 2017.

(Cited page 96.)

[ADB+
16] Muhammet M. Akiner, Berna Demirci, Giorgi Babuadze,

Vincent Robert, and Francis Schaffner. Correction: Spread

of the invasive mosquitoes aedes aegypti and aedes albopic-

tus in the black sea region increases risk of chikungunya,

dengue, and zika outbreaks in europe. PLOS Neglected Trop-

ical Diseases, 10(5):1–2, 05 2016. (Cited page 127.)

[AE13] Tushar Athawale and Alireza Entezari. Uncertainty quan-

tification in linear interpolation for isosurface extraction.

IEEE Transactions on Visualization and Computer Graphics,

2013. (Cited page 94.)

[AGL05] James Ahrens, Berk Geveci, and Charles Law. ParaView: An

End-User Tool for Large-Data Visualization. The Visualiza-

tion Handbook, pages 717–731, 2005. (Cited pages 3 and 65.)

[AJ19] T. Athawale and C. R. Johnson. Probabilistic asymptotic

decider for topological ambiguity resolution in level-set ex-

147

148 Bibliography

traction for uncertain 2d data. IEEE Transactions on Visual-

ization and Computer Graphics, 2019. (Cited page 94.)

[ASE16] T. Athawale, E. Sakhaee, and A. Entezari. Isosurface vi-

sualization of data with nonparametric models for uncer-

tainty. IEEE Transactions on Visualization and Computer Graph-

ics, 2016. (Cited page 94.)

[BAA+
16] Andrew C. Bauer, H. Abbasi, J. Ahrens, H. Childs,

B. Geveci, S. Klasky, K. Moreland, Patrick O’Leary, V. Vish-

wanath, B. Whitlock, and E W. Bethel. In-situ methods,

infrastructures, and applications on high performance com-

puting platforms. Comp. Grap. For., 2016. (Cited pages 90

and 95.)

[Ban70] T. F. Banchoff. Critical points and curvature for embedded

polyhedral surfaces. The American Mathematical Monthly,

1970. (Cited pages 21, 36, 47, 60, and 61.)

[BC91] Dimitri P. Bertsekas and David Castañon. Parallel syn-

chronous and asynchronous implementations of the auction

algorithm. Parallel Computing, 1991. (Cited page 99.)

[BDSS18] Alexander Bock, Harish Doraiswamy, Adam Summers, and

Cláudio T. Silva. TopoAngler: Interactive Topology-Based

Extraction of Fishes. IEEE Transactions on Visualization and

Computer Graphics (Proc. of IEEE VIS), 2018. (Cited page 5.)

[BEHP03] Peer-Timo Bremer, Herbert Edelsbrunner, Bernd Hamann,

and Valerio Pascucci. A Multi-Resolution Data Structure for

2-Dimensional Morse Functions. In Proc. of IEEE VIS, 2003.

(Cited page 36.)

[Bel66] Richard Bellman. Dynamic programming. Science,

153(3731):34–37, 1966. (Cited page 7.)

[Ber81] Dimitri P. Bertsekas. A new algorithm for the assignment

problem. Mathematical Programming, 1981. (Cited pages 83,

91, 96, 97, 98, 99, 100, 102, 103, and 119.)

[Bey98] Jurgen Bey. Simplicial grid refinement: on Freudenthal’s

algorithm and the optimal number of congruence classes.

Numer. Math., 85:1–29, 1998. (Cited pages 36, 37, 38, 40,

and 41.)

Bibliography 149

[BFS00] Silvia Biasotti, Bianca Falcidieno, and Michela Spagnuolo.

Extended Reeb Graphs for Surface Understanding and De-

scription. In Discrete Geometry for Computer Imagery, 2000.

(Cited page 36.)

[BGL+
18] Harsh Bhatia, Attila G. Gyulassy, Vincenzo Lordi, John E.

Pask, Valerio Pascucci, and Peer-Timo Bremer. Topoms:

Comprehensive topological exploration for molecular and

condensed-matter systems. J. of Computational Chemistry,

2018. (Cited pages 5 and 22.)

[BGSF08] S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno.

Reeb graphs for shape analysis and applications. TCS, 2008.

(Cited pages 5 and 31.)

[BGW14] U. Bauer, X. Ge, and Y. Wang. Measuring distance between

Reeb graphs. In S. o. C. G., 2014. (Cited page 96.)

[BHJ+14] Georges Pierre Bonneau, Hans Christian Hege, Chris R.

Johnson, Manuel M. Oliveira, Kristin Potter, Penny Rhein-

gans, and Thomas Schultz". Overview and state-of-the-art

of uncertainty visualization. Mathematics and Visualization,

37:3–27, 2014. (Cited page 94.)

[BJB+
12] H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. A. Levine, L. G.

Nonato, and V. Pascucci. Flow visualization with quantified

spatial and temporal errors using edge maps. IEEE Trans-

actions on Visualization and Computer Graphics, 2012. (Cited

page 94.)

[BMBF+
19] Talha Bin Masood, Joseph Budin, Martin Falk, Guillaume

Favelier, Christoph Garth, Charles Gueunet, Pierre Guil-

lou, Lutz Hofmann, Petar Hristov, Adhitya Kamakshidasan,

Christopher Kappe, Pavol Klacansky, Patrick Laurin, Joshua

Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime Soler,

Peter Steneteg, Julien Tierny, Will Usher, Jules Vidal, and

Michal Wozniak. An Overview of the Topology ToolKit. In

TopoInVis, 2019. (Cited pages 3 and 80.)

[BMW15] Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong

equivalence of the interleaving and functional distortion

metrics for Reeb graphs. In S. o. C. G., 2015. (Cited page 96.)

150 Bibliography

[BR63] R. L. Boyell and H. Ruston. Hybrid techniques for real-time

radar simulation. In Proc. of the IEEE Fall Joint Computer

Conference, 1963. (Cited page 5.)

[BWT+
11] P.T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and

J. Bell. Interactive exploration and analysis of large scale

simulations using topology-based data segmentation. IEEE

Transactions on Visualization and Computer Graphics, 2011.

(Cited pages 5, 36, and 50.)

[BYM+
14] Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov,

Gunther H. Weber, and Bernd Hamann. Measuring the

distance between merge trees. In TopoInVis. 2014. (Cited

page 96.)

[CCG+
09] Frédéric Chazal, David Cohen-Steiner, Marc Glisse,

Leonidas J. Guibas, and Steve Oudot. Proximity of per-

sistence modules and their diagrams. In S. o. C. G., 2009.

(Cited page 27.)

[CCO17] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced

Wasserstein Kernel for Persistence Diagrams. ICML, 2017.

(Cited pages 5 and 96.)

[CD14] Marco Cuturi and Arnaud Doucet. Fast computation of

wasserstein barycenters. In ICML, 2014. (Cited page 96.)

[CEH05] David Cohen-Steiner, Herbert Edelsbrunner, and John

Harer. Stability of persistence diagrams. In S. o. C. G., 2005.

(Cited pages 27, 30, 76, and 83.)

[CKV13] M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela.

A comparative study of efficient initialization methods for

the k-means clustering algorithm. Expert Syst. Appl., 2013.

(Cited pages 107 and 117.)

[CLLR05] Yi-Jen Chiang, Tobias Lenz, Xiang Lu, and Günter Rote.

Simple and optimal output-sensitive construction of con-

tour trees using monotone paths. Comput. Geom., 2005.

(Cited page 52.)

[CLRS09] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-

duction to Algorithms. MIT Press, 2009. (Cited pages 47, 52,

and 54.)

Bibliography 151

[CRM+
20] Beniamino Caputo, Gianluca Russo, Mattia Manica,

Francesco Vairo, Piero Poletti, Giorgio Guzzetta, Stefano

Merler, Carolina Scagnolari, and Angelo Solimini. A com-

parative analysis of the 2007 and 2017 italian chikungunya

outbreaks and implication for public health response. PLOS

Neglected Tropical Diseases, 14(6):1–12, 06 2020. (Cited

page 126.)

[CSA00] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees

in all dimensions. In Symp. on Dis. Alg., 2000. (Cited pages 5,

31, and 36.)

[CSEH05] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability

of persistence diagrams. In S. o. C. G., 2005. (Cited page 96.)

[CSEHM10] David Cohen-Steiner, Herbert Edelsbrunner, John Harer,

and Yuriy Mileyko. Lipschitz functions have lp-stable per-

sistence. Foundations of Computational Mathematics, 2010.

(Cited page 27.)

[CSvdP04] Hamish A. Carr, Jack Snoeyink, and Michiel van de Panne.

Simplifying Flexible Isosurfaces Using Local Geometric

Measures. In IEEE VIS, 2004. (Cited page 5.)

[Cut13] Marco Cuturi. Sinkhorn distances: Lightspeed computation

of optimal transport. In NIPS. 2013. (Cited page 96.)

[CWSA16] Hamish A. Carr, Gunther H. Weber, Christopher M. Sewell,

and James P. Ahrens. Parallel peak pruning for scalable

SMP contour tree computation. In IEEE Symposium on Large

Data Analysis and Visualization, 2016. (Cited page 52.)

[DBvK97] Mark De Berg and Marc van Kreveld. Trekking in the alps

without freezing or getting tired. Algorithmica, 1997. (Cited

page 5.)

[DFFIM15] Leila De Floriani, Ulderico Fugacci, Federico Iuricich, and

Paola Magillo. Morse complexes for shape segmentation

and homological analysis: discrete models and algorithms.

Comp. Grap. For., 2015. (Cited pages 5 and 32.)

[DHLZ02] Peter Diggle, Patrick Heagerty, K.-Y. Liang, and Scott Zeger.

The Analysis of Longitudinal Data. Oxford University Press,

2002. (Cited page 95.)

152 Bibliography

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: an indus-

try standard API for shared-memory programming. IEEE

computational science and engineering, 5(1):46–55, 1998. (Cited

page 61.)

[EH09] H. Edelsbrunner and J. Harer. Computational Topology: An

Introduction. American Mathematical Society, 2009. (Cited

pages 5, 12, 17, 18, 22, 23, 25, 26, 31, 50, 53, and 96.)

[EHZ01] Herbert Edelsbrunner, John Harer, and Afra Zomoro-

dian. Hierarchical morse complexes for piecewise linear

2-manifolds. In S. o. C. G., 2001. (Cited page 36.)

[Elk03] C. Elkan. Using the triangle inequality to accelerate k-

means. In ICML, 2003. (Cited page 107.)

[ELZ02] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-

dian. Topological persistence and simplification. Disc.

Compu. Geom., 2002. (Cited pages 5 and 7.)

[EM90] Herbert Edelsbrunner and Ernst P Mucke. Simulation of

simplicity: a technique to cope with degenerate cases in

geometric algorithms. ACM Trans. on Graph., 1990. (Cited

page 19.)

[FBW16] F. Ferstl, K. Bürger, and R. Westermann. Streamline variabil-

ity plots for characterizing the uncertainty in vector field

ensembles. IEEE Transactions on Visualization and Computer

Graphics, 2016. (Cited page 95.)

[FFST18] Guillaume Favelier, Noura Faraj, Brian Summa, and Julien

Tierny. Persistence Atlas for Critical Point Variability in

Ensembles. IEEE Transactions on Visualization and Computer

Graphics, 2018. (Cited pages 95, 108, and 116.)

[FKRW16] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann.

Visual analysis of spatial variability and global correlations

in ensembles of iso-contours. Comp. Grap. For., 2016. (Cited

page 95.)

[For98] Robin Forman. A User’s Guide to Discrete Morse Theory.

Advances in Mathematics, 1998. (Cited page 142.)

Bibliography 153

[FP16] Jean-Daniel Fekete and Romain Primet. Progressive Analyt-

ics: A Computation Paradigm for Exploratory Data Analy-

sis. arXiv, 2016. (Cited page 6.)

[GABCG+
14] D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P.

Piquemal, and J. Tierny. Characterizing molecular inter-

actions in chemical systems. IEEE Transactions on Visualiza-

tion and Computer Graphics (Proc. of IEEE VIS), 2014. (Cited

pages 5 and 22.)

[GBG+
14] A. Gyulassy, P.T. Bremer, R. Grout, H. Kolla, J. Chen, and

V. Pascucci. Stability of dissipation elements: A case study

in combustion. Comp. Graph. For., 2014. (Cited page 5.)

[GBHP08] A. Gyulassy, P. T. Bremer, B. Hamann, and V. Pascucci. A

practical approach to Morse-Smale complex computation:

Scalability and generality. IEEE Transactions on Visualiza-

tion and Computer Graphics (Proc. of IEEE VIS), 2008. (Cited

page 5.)

[GBP18] Attila Gyulassy, Peer-Timo Bremer, and Valerio Pas-

cucci. Shared-Memory Parallel Computation of Morse-

Smale Complexes with Improved Accuracy. IEEE Transac-

tions on Visualization and Computer Graphics (Proc. of IEEE

VIS), 2018. (Cited page 5.)

[GDL+
02] Benjamin F. Gregorski, Mark A. Duchaineau, Peter Lind-

strom, Valerio Pascucci, and Kenneth I. Joy. Interactive

view-dependent rendering of large isosurfaces. In Proc. of

IEEE VIS, pages 475–482, 2002. (Cited page 36.)

[GDN+
07] Attila Gyulassy, Mark A. Duchaineau, Vijay Natarajan, Va-

lerio Pascucci, Eduardo Bringa, Andrew Higginbotham,

and Bernd Hamann. Topologically clean distance fields.

IEEE Transactions on Visualization and Computer Graphics

(Proc. of IEEE VIS), 2007. (Cited page 5.)

[GFJT17] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based

Augmented Merge Trees with Fibonacci Heaps,. In IEEE

LDAV, 2017. (Cited page 108.)

[GFJT19] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien

Tierny. Task-Based Augmented Contour Trees with Fi-

154 Bibliography

bonacci Heaps. IEEE Trans. Parallel Distrib. Syst., 2019.

(Cited pages 5, 31, 60, 61, 81, and 82.)

[GKL+
15] A. Gyulassy, A. Knoll, K.C. Lau, B. Wang, P.T. Bremer,

M.E. Papka, L. A. Curtiss, and V. Pascucci. Interstitial and

interlayer ion diffusion geometry extraction in graphitic

nanosphere battery materials. IEEE Transactions on Visu-

alization and Computer Graphics (Proc. of IEEE VIS), 2015.

(Cited page 5.)

[GP00] Thomas Gerstner and Renato Pajarola. Topology preserving

and controlled topology simplifying multiresolution isosur-

face extraction. In Proc. of IEEE VIS, pages 259–266, 2000.

(Cited page 36.)

[GRP+
12] David Guenther, Jan Reininghaus, Steffen Prohaska, Tino

Weinkauf, and Hans-Christian Hege. Efficient computation

of a hierarchy of discrete 3d gradient vector fields. In Proc.

of TopoInVis, pages 15–29, 2012. (Cited page 36.)

[GST14] David Günther, Joseph Salmon, and Julien Tierny. Manda-

tory critical points of 2D uncertain scalar fields. Comp.

Graph. For., 2014. (Cited page 94.)

[H. 42] H. Freudenthal. Simplizialzerlegungen von beschrankter

Flachheit. Annals of Mathematics, 43:580–582, 1942. (Cited

pages 36, 37, 38, 39, and 65.)

[HC20] M. Hesse and P. A. Cassak. Magnetic reconnection in the

space sciences: Past, present, and future. Journal of Geo-

physical Research: Space Physics, 125(2):e2018JA025935, 2020.

e2018JA025935 2018JA025935. (Cited page 128.)

[HLH+
16] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Flori-

ani, G. Scheuermann, H. Hagen, and C. Garth. A survey of

topology-based methods in visualization. Comp. Grap. For.,

2016. (Cited page 5.)

[HOGJ13] M. Hummel, H. Obermaier, C. Garth, and K. I. Joy. Compar-

ative visual analysis of lagrangian transport in CFD ensem-

bles. IEEE Transactions on Visualization and Computer Graph-

ics, 2013. (Cited page 95.)

Bibliography 155

[HSKK01a] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and

Tosiyasu L. Kunii. Topology matching for fully automatic

similarity estimation of 3D shapes. In Proc. of ACM SIG-

GRAPH, 2001. (Cited page 96.)

[HSKK01b] Masaki Hilaga, Yoshihisa Shinagawa, Taku Komura, and

Tosiyasu L. Kunii. Topology matching for fully automatic

similarity estimation of 3d shapes. In Proc. of ACM SIG-

GRAPH, 2001. (Cited page 36.)

[IF17] Federico Iuricich and Leila De Floriani. Hierarchical forman

triangulation: A multiscale model for scalar field analysis.

Comput. Graph., 66:113–123, 2017. (Cited page 36.)

[J. 95] J. Bey. Tetrahedral grid refinement. Computing, 55:355–378,

1995. (Cited pages 36, 37, 38, 39, 41, and 65.)

[JS03] C. R. Johnson and A. R. Sanderson. A next step: Visual-

izing errors and uncertainty. IEEE Computer Graphics and

Applications, 2003. (Cited page 94.)

[JS06] Guangfeng Ji and Han-Wei Shen. Feature Tracking using

Earth Mover’s Distance and Global Optimization. In Proc.

of IEEE PacificVis, 2006. (Cited page 50.)

[JSF20] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. PANENE:

A Progressive Algorithm for Indexing and Querying Ap-

proximate k-Nearest Neighbors. IEEE Transactions on Visu-

alization and Computer Graphics, 2020. (Cited page 6.)

[Kan42] Leonid Kantorovich. On the translocation of masses. AS

URSS, 1942. (Cited pages 28 and 96.)

[KE07] Thomas Klein and Thomas Ertl. Scale-Space Tracking of

Critical Points in 3D Vector Fields. In Topology-based Methods

in Visualization, Mathematics and Visualization. Springer,

2007. (Cited page 50.)

[Kep19] Johannes Kepler. 1619. (Cited page 2.)

[Kla20] Pavol Klacansky. Open Scientific Visualization Data Sets.

https://klacansky.com/open-scivis-datasets/,

2020. (Cited pages 55, 56, 80, 144, and 145.)

https://klacansky.com/open-scivis-datasets/

156 Bibliography

[KMN16] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov.

Geometry helps to compare persistence diagrams. ACM

Journal of Experimental Algorithmics, 2016. (Cited pages 83,

91, 96, 97, 98, 99, 100, 102, 108, 110, 111, 112, 113, and 119.)

[Kra10] Martin Kraus. Visualization of uncertain contour trees.

In International Conference on Information Visualization Theory

and Applications, 2010. (Cited page 95.)

[KRHH11] J. Kasten, J. Reininghaus, I. Hotz, and H.C. Hege. Two-

dimensional time-dependent vortex regions based on the

acceleration magnitude. IEEE Transactions on Visualization

and Computer Graphics, 2011. (Cited pages 5 and 22.)

[Kuh60] H W Kuhn. Some combinatorial lemmas in topology. IBM

Journal of Research and Development, 45:518–524, 1960. (Cited

pages 16, 36, 37, 38, 40, and 41.)

[LBM+
06] D. E. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and

V. Pascucci. Understanding the structure of the turbulent

mixing layer in hydrodynamic instabilities. IEEE Transac-

tions on Visualization and Computer Graphics (Proc. of IEEE

VIS), 2006. (Cited page 5.)

[LCO18] Théo Lacombe, Marco Cuturi, and Steve Oudot. Large

Scale computation of Means and Clusters for Persistence

Diagrams using Optimal Transport. In NIPS, 2018. (Cited

pages 96, 108, and 110.)

[Llo82] S. Lloyd. Least squares quantization in PCM. IEEE Transac-

tions on Information Theory, 1982. (Cited page 100.)

[Loo87] Charles Loop. Smooth Subdivision Surfaces Based on Tri-

angles. Master’s thesis, University of Utah, 1987. (Cited

pages 36, 37, 38, 39, and 65.)

[LS16] T. Liebmann and G. Scheuermann. Critical points of

gaussian-distributed scalar fields on simplicial grids. Com-

puter Graphics Forum (Proc. of EuroVis), 2016. (Cited page 94.)

[LVLM04] Thomas Lewiner, Luiz Velho, Hélio Lopes, and Vinícius

Mello. Hierarchical isocontours extraction and compres-

sion. In SIBGRAPHI, pages 234–241, 2004. (Cited page 36.)

Bibliography 157

[MAH+
05] Alan Maceachren, A.Robinson, Susan Hopper, Steven Gard-

ner, Robert Murray, Mark Gahegan, and Elisabeth Hetzler.

Visualizing geospatial information uncertainty: What we

know and what we need to know. Cartography and Geo-

graphic Information Science, 2005. (Cited page 94.)

[MDN12] Senthilnathan Maadasamy, Harish Doraiswamy, and Vijay

Natarajan. A hybrid parallel algorithm for computing and

tracking level set topology. In Proc. of HiPC, 2012. (Cited

page 52.)

[Mil63] J. Milnor. Morse Theory. Princeton University Press, 1963.

(Cited pages 21 and 26.)

[Mil68] Robert B. Miller. Response time in man-computer conver-

sational transactions. In Fall Joint Computer Conference, 1968.

(Cited page 5.)

[MLRu10] Stefano Markidis, Giovanni Lapenta, and Rizwan-uddin.

Multi-scale simulations of plasma with ipic3d. Mathemat-

ics and Computers in Simulation, 80(7):1509–1519, 2010. Mul-

tiscale modeling of moving interfaces in materials. (Cited

page 131.)

[Mon81] Gaspard Monge. Mémoire sur la théorie des déblais et des

remblais. Académie Royale des Sciences de Paris, 1781. (Cited

pages 28 and 96.)

[Mor10] Dmitriy Morozov. Dionysus. http://www.mrzv.org/

software/dionysus, 2010. Accessed: 2019-03-01. (Cited

pages 28 and 102.)

[MOT10] H.-C. Hege M. Otto, T. Germer and H. Theisel. Uncer-

tain 2D vector field topology. Comp. Graph. For., 29:347–356,

2010. (Cited page 94.)

[MOT11] T. Germer M. Otto and H. Theisel. Uncertain topology of 3D

vector fields. Proc. of IEEE Pacific Vis, 2011. (Cited page 94.)

[MSA+
19] Luana Micallef, Hans-Jörg Schulz, Marco Angelini, Michaël

Aupetit, Remco Chang, Jörn Kohlhammer, Adam Perer, and

Giuseppe Santucci. The Human User in Progressive Vi-

sual Analytics. In EuroVis 2019 Short Papers, 2019. (Cited

page 135.)

http://www.mrzv.org/software/dionysus
http://www.mrzv.org/software/dionysus

158 Bibliography

[Mun57] James Munkres. Algorithms for the assignment and trans-

portation problems. Journal of the Society for Industrial and

Applied Mathematics, 1957. (Cited pages 28, 91, 96, 97,

and 102.)

[MWK14] Mahsa Mirzargar, Ross T. Whitaker, and Robert M. Kirby.

Curve boxplot: Generalization of boxplot for ensembles

of curves. IEEE Transactions on Visualization and Computer

Graphics, 2014. (Cited page 95.)

[OGT19] Malgorzata Olejniczak, André Severo Pereira Gomes, and

Julien Tierny. A Topological Data Analysis Perspective

on Non-Covalent Interactions in Relativistic Calculations.

International Journal of Quantum Chemistry, 2019. (Cited

pages 5 and 22.)

[PB00] Valerio Pascucci and Chandrajit L. Bajaj. Time critical iso-

surface refinement and smoothing. In Proc. of the Volume

Visualization and Graphics Symposium, pages 33–42, 2000.

(Cited page 36.)

[PCMS04] Valerio Pascucci, Kree Cole-McLaughlin, and Giorgio

Scorzelli. Multi-resolution computation and presentation

of contour trees. In Proc. IASTED conference on visualization,

imaging, and image processing, 2004. (Cited page 36.)

[PGA13] K. Potter, S. Gerber, and E. W. Anderson. Visualization of

uncertainty without a mean. IEEE Computer Graphics and

Applications, 2013. (Cited page 94.)

[PH11] K. Pöthkow and H.-C. Hege. Positional uncertainty of iso-

contours: Condition analysis and probabilistic measures.

IEEE Transactions on Visualization and Computer Graphics,

2011. (Cited page 94.)

[PH13] Kai Pöthkow and Hans-Christian Hege. Nonparametric

models for uncertainty visualization. Comp. Grap. For., 2013.

(Cited page 94.)

[PK12] Johnson CR Potter K, Rosen P. From quantification to vi-

sualization: A taxonomy of uncertainty visualization ap-

proaches. IFIP Advances in Information and Communication

Technology, 2012. (Cited page 94.)

Bibliography 159

[PMW13] T. Pfaffelmoser, M. Mihai, and R. Westermann. Visual-

izing the variability of gradients in uncertain 2D scalar

fields. IEEE Transactions on Visualization and Computer Graph-

ics, 2013. (Cited page 94.)

[PPH12] Christoph Petz, Kai Pöthkow, and Hans-Christian Hege.

Probabilistic local features in uncertain vector fields with

spatial correlation. Comp. Graph. For., 2012. (Cited page 94.)

[PPH13] Kai Pöthkow, Christoph Petz, and Hans-Christian Hege.

Approximate level-crossing probabilities for interactive vi-

sualization of uncertain isocontours. Int. J. Uncert. Quantif.,

2013. (Cited page 94.)

[PRW11] Tobias Pfaffelmoser, Matthias Reitinger, and Rüdiger West-

ermann. Visualizing the positional and geometrical vari-

ability of isosurfaces in uncertain scalar fields. Comp. Graph.

For., 2011. (Cited page 94.)

[PSBM07] V Pascucci, G Scorzelli, P T Bremer, and A Mascarenhas.

Robust on-line computation of Reeb graphs: simplicity and

speed. ACM Trans. on Graph., 2007. (Cited pages 5, 36,

and 37.)

[PW12] Tobias Pfaffelmoser and Rüdiger Westermann. Visualiza-

tion of global correlation structures in uncertain 2D scalar

fields. Comp. Grap. For., 2012. (Cited page 94.)

[PWB+
09] K. Potter, A. Wilson, P. Bremer, D. Williams, C. Doutriaux,

V. Pascucci, and C. R. Johnson. Ensemble-vis: A frame-

work for the statistical visualization of ensemble data. In

2009 IEEE International Conference on Data Mining Workshops,

2009. (Cited page 95.)

[PWH11] Kai Pöthkow, Britta Weber, and Hans-Christian Hege. Prob-

abilistic marching cubes. In Comp. Graph. For., 2011. (Cited

page 94.)

[PWL97] A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches

to uncertainty visualization. The Visual Computer, 1997.

(Cited page 94.)

[RCL+
21] Martin Royer, Frédéric Chazal, Clément Levrard, Yuhei

Umeda, and Yuichi Ike. ATOL: Measure Vectorization for

160 Bibliography

Automatic Topologically-Oriented Learning. In The 24th

International Conference on Artificial Intelligence and Statistics

(AISTATS 2021), The 24th International Conference on Arti-

ficial Intelligence and Statistics, Virtual conference, France,

April 2021. (Cited page 117.)

[R.E83] R.E. Bank, and A.H. Sherman, and A. Weiser. Refinement

algorithms and data structures for regular local mesh re-

finement. Scientific Computing, pages 3–17, 1983. (Cited

pages 36, 37, 38, 39, 41, and 65.)

[Ree46] Georges Reeb. Sur les points singuliers d’une forme de Pfaff

complètement intégrable ou d’une fonction numérique.

Comptes Rendus des séances de l’Académie des sciences, 222(847-

849):76, 1946. (Cited pages 5 and 31.)

[RHBK15] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland

Kwitt. A stable multi-scale kernel for topological machine

learning. In IEEE CVPR, 2015. (Cited pages 5 and 96.)

[RKWH12] Jan Reininghaus, Jens Kasten, Tino Weinkauf, and Ingrid

Hotz. Efficient Computation of Combinatorial Feature

Flow Fields. IEEE Transactions on Visualization and Computer

Graphics, 2012. (Cited page 50.)

[RSL17] B. Rieck, F. Sadlo, and H. Leitte. Topological machine

learning with persistence indicator functions. In Proc. of

TopoInVis, 2017. (Cited pages 5 and 96.)

[RWS11] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard.

Theory and Algorithms for Constructing Discrete Morse

Complexes from Grayscale Digital Images. IEEE Trans. Pat-

tern Anal. Mach. Intell., 2011. (Cited page 5.)

[S. 95] S. Zhang. Successive subdivision of tetrahedra and multi-

grid methods on tetrahedral meshes. Houston Journal of

Mathematics, 21:541–556, 1995. (Cited pages 36, 37, 38, 39,

41, and 65.)

[SBB18] Francesca Samsel, Lyn Bartram, and Annie Bares. Art, af-

fect and color: Creating engaging expressive scientific vi-

sualization. In 2018 IEEE VIS Arts Program (VISAP), pages

1–9, 2018. (Cited pages 19 and 20.)

Bibliography 161

[Sci04] I.E.E.E SciVisContest. Simulation of the isabel hur-

ricane. http://sciviscontest-staging.ieeevis.

org/2004/data.html, 2004. (Cited pages 109 and 118.)

[SDGP+
15] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco

Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and

Leonidas Guibas. Convolutional wasserstein distances.

ACM Transactions on Graphics, 2015. (Cited page 96.)

[SK08] Johannes Singler and Benjamin Konsik. The GNU libstdc++

Parallel Mode: Software Engineering Considerations. In

Proc. of International Workshop on Multicore Software Engineer-

ing, 2008. (Cited pages 54 and 79.)

[SKS12] S. Schlegel, N. Korn, and G. Scheuermann. On the interpo-

lation of data with normally distributed uncertainty for vi-

sualization. IEEE Transactions on Visualization and Computer

Graphics (Proc. of IEEE VIS), 2012. (Cited page 94.)

[SM17] Dmitriy Smirnov and Dmitriy Morozov. Triplet Merge

Trees. In TopoInVis, 2017. (Cited pages 5 and 52.)

[Sou11] T. Sousbie. The persistent cosmic web and its filamentary

structure: Theory and implementations. Royal Astronomical

Society, 2011. http://www2.iap.fr/users/sousbie/

web/html/indexd41d.html. (Cited pages 5 and 23.)

[SPCT18a] M. Soler, M. Plainchault, B. Conche, and J. Tierny. Topo-

logically controlled lossy compression. In 2018 IEEE Pacific

Visualization Symposium (PacificVis), 2018. (Cited page 130.)

[SPCT18b] Maxime Soler, Mélanie Plainchault, Bruno Conche, and

Juilen Tierny. Lifted Wasserstein Matcher for Fast and Ro-

bust Topology Tracking. In IEEE Symposium on Large Data

Analysis and Visualization, 2018. (Cited pages 29, 95, 96, 97,

102, 108, and 110.)

[SPCT18c] Maxime Soler, Melanie Plainchault, Bruno Conche, and

Julien Tierny. Lifted Wasserstein matcher for fast and ro-

bust topology tracking. In IEEE Symposium on Large Data

Analysis and Visualization, 2018. (Cited page 50.)

http://sciviscontest-staging.ieeevis.org/2004/data.html
http://sciviscontest-staging.ieeevis.org/2004/data.html
http://www2.iap.fr/users/sousbie/web/html/indexd41d.html
http://www2.iap.fr/users/sousbie/web/html/indexd41d.html

162 Bibliography

[SPD+
19] Maxime Soler, Martin Petitfrere, Gilles Darche, Melanie

Plainchault, Bruno Conche, and Julien Tierny. Ranking Vis-

cous Finger Simulations to an Acquired Ground Truth with

Topology-Aware Matchings. In IEEE Symposium on Large

Data Analysis and Visualization, 2019. (Cited page 5.)

[SPN+
16] Nithin Shivashankar, Pratyush Pranav, Vijay Natarajan,

Rien van de Weygaert, EG Patrick Bos, and Steven Rieder.

Felix: A topology based framework for visual exploration of

cosmic filaments. IEEE Transactions on Visualization and Com-

puter Graphics, 2016. http://vgl.serc.iisc.ernet.

in/felix/index.html. (Cited pages 5 and 23.)

[SSW14] Himangshu Saikia, Hans-Peter Seidel, and Tino Weinkauf.

Extended branch decomposition graphs: Structural com-

parison of scalar data. Comp. Graph. For., 2014. (Cited

page 96.)

[ST83] D. Sleator and R. Tarjan. A data structure for dynamic

trees. Journal of Computer and System Sciences, 1983. (Cited

pages 47 and 48.)

[SW17] Himangshu Saikia and Tino Weinkauf. Global Feature

Tracking and Similarity Estimation in Time-Dependent

Scalar Fields. Comp. Graph. For., 2017. (Cited page 50.)

[SZD+
10] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and

R. Moorhead. Noodles: A tool for visualization of numeri-

cal weather model ensemble uncertainty. IEEE Transactions

on Visualization and Computer Graphics, 2010. (Cited page 95.)

[Szy13] A. Szymczak. Hierarchy of stable Morse decompositions.

IEEE Transactions on Visualization and Computer Graphics,

2013. (Cited page 94.)

[TFL+
17] Julien Tierny, Guillaume Favelier, Joshua A. Levine,

Charles Gueunet, and Michael Michaux. The Topol-

ogy ToolKit. IEEE Transactions on Visualization and Com-

puter Graphics (Proc. of IEEE VIS), 2017. https://

topology-tool-kit.github.io/. (Cited pages 3, 31,

34, 55, 60, 61, 63, 65, 70, 80, 81, 92, 108, 130, and 137.)

http://vgl.serc.iisc.ernet.in/felix/index.html
http://vgl.serc.iisc.ernet.in/felix/index.html
https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/

Bibliography 163

[Tie18] Julien Tierny. Topological Data Analysis for Scientific Visual-

ization. Springer, 2018. (Cited page 12.)

[TMMH14] Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and

John Harer. Fréchet Means for Distributions of Persistence

Diagrams. Disc. Compu. Geom., 2014. (Cited pages 9, 91, 97,

100, 101, 102, 103, 108, 110, 111, 112, 113, 117, and 119.)

[TN13] Dilip Mathew Thomas and Vijay Natarajan. Detecting sym-

metry in scalar fields using augmented extremum graphs.

IEEE Transactions on Visualization and Computer Graphics

(Proc. of IEEE VIS), 2013. (Cited page 96.)

[TN14] D. M. Thomas and V. Natarajan. Multiscale symmetry de-

tection in scalar fields by clustering contours. IEEE Trans-

actions on Visualization and Computer Graphics (Proc. of IEEE

VIS), 2014. (Cited page 96.)

[TTK20] TTK Contributors. TTK Data.

https://github.com/topology-tool-kit/

ttk-data/tree/dev, 2020. (Cited pages 3, 23, 27,

31, 55, 80, 118, and 145.)

[TV98] S. Tarasov and M. Vyali. Construction of contour trees in

3d in o(n log n) steps. In S. o. C. G., 1998. (Cited page 5.)

[unc08] ISO/IEC Guide 98-3:2008 uncertainty of measurement -

part 3: Guide to the expression of uncertainty in measure-

ment (GUM). 2008. (Cited page 94.)

[VBT19] J. Vidal, J. Budin, and J. Tierny. Progressive wasserstein

barycenters of persistence diagrams. IEEE Transactions on

Visualization and Computer Graphics (Proc. of IEEE VIS), 2019.

(Cited page 91.)

[VGT21] J. Vidal, P. Guillou, and J. Tierny. A progressive approach to

scalar field topology. IEEE Transactions on Visualization and

Computer Graphics, 2021. (Cited page 34.)

[VT21] J. Vidal and J. Tierny. Fast approximation of persistence

diagrams with guarantees. IEEE Symposium on Large Data

Analysis and Visualization, 2021. (Cited page 70.)

https://github.com/topology-tool-kit/ttk-data/tree/dev
https://github.com/topology-tool-kit/ttk-data/tree/dev

164 Bibliography

[WAG+
19] A. Park Williams, John T. Abatzoglou, Alexander Ger-

shunov, Janin Guzman-Morales, Daniel A. Bishop, Jen-

nifer K. Balch, and Dennis P. Lettenmaier. Observed im-

pacts of anthropogenic climate change on wildfire in cali-

fornia. Earth’s Future, 7(8):892–910, 2019. (Cited page 125.)

[WF09a] Kenneth Weiss and Leila De Floriani. Diamond hierarchies

of arbitrary dimension. Comput. Graph. Forum, 28(5):1289–

1300, 2009. (Cited page 36.)

[WF09b] Kenneth Weiss and Leila De Floriani. Supercubes: A high-

level primitive for diamond hierarchies. IEEE Transactions

on Visualization and Computer Graphics (Proc. of IEEE VIS),

15(6):1603–1610, 2009. (Cited page 36.)

[WM04] Matt Williams and Tamara Munzner. Steerable, Progressive

Multidimensional Scaling. In Proc. of IEEE InfoVis, 2004.

(Cited page 6.)

[WMK13] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour

boxplots: A method for characterizing uncertainty in fea-

ture sets from simulation ensembles. IEEE Transactions on

Visualization and Computer Graphics, 2013. (Cited page 95.)

[WZ13] Keqin Wu and Song Zhang. A contour tree based visu-

alization for exploring data with uncertainty. International

Journal for Uncertainty Quantification, 2013. (Cited page 95.)

[ZGC+
17] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-

Daniel Fekete, and Tim Kraska. How progressive visualiza-

tions affect exploratory analysis. IEEE Transactions on Visu-

alization and Computer Graphics, 2017. (Cited page 6.)

[ZSC+
17] Qian Zhang, Kaiyuan Sun, Matteo Chinazzi, Ana Pastore y

Piontti, Natalie E. Dean, Diana Patricia Rojas, Stefano Mer-

ler, Dina Mistry, Piero Poletti, Luca Rossi, Margaret Bray,

M. Elizabeth Halloran, Ira M. Longini, and Alessandro

Vespignani. Spread of zika virus in the americas. Proceed-

ings of the National Academy of Sciences, 114(22):E4334–E4343,

2017. (Cited page 126.)

Progressivité en Analyse Topologique de Données

L’analyse topologique de donnés forme une famille d’outils qui permettent l’extraction générique et efficace

de caractéristiques structurelles dans les données. Cependant, bien que ces techniques aient des complexités

asymptotiques connues et raisonnables, elles sont rarement interactives en pratique sur des jeux de données réels,

ce qui limite leur utilisation pour l’analyse et la visualisation interactives de données. Dans cette thèse, nous avons

cherché à développer des méthodes progressives pour l’analyse topologique de données scalaires scientifiques, qui

peuvent être interrompues pour fournir rapidement un résultat approché exploitable, et sont capables de l’affiner

ensuite. Dans un premier temps, nous présentons une représentation hiérarchique des données d’entrée, qui

permet de définir des algorithmes topologiques coarse-to-fine efficaces. En conséquence, nous introduisons deux

algorithmes progressifs pour le calcul des points critiques et du diagramme de persistance d’un champ scalaire. Ces

méthodes fournissent des sorties interprétables en cas d’interruption, offrent un retour visuel continu tout au

long du calcul et sont plus rapides en pratique que leurs homologues non progressifs. Ensuite, nous revisitons

ce cadre progressif pour introduire un algorithme pour le calcul approché du diagramme de persistance d’un

champ scalaire, avec des garanties sur l’erreur d’approximation associée. Enfin, afin d’effectuer une analyse

visuelle de données d’ensemble, nous présentons un nouvel algorithme progressif pour le calcul du barycentre

de Wasserstein d’un ensemble de diagrammes de persistance, une tâche notoirement coûteuse en calcul. Notre

approche progressive permet d’approcher le barycentre de manière interactive. Nous étendons cette méthode à

un algorithme de classification topologique de données d’ensemble, qui est progressif et capable de respecter une

contrainte de temps. Nous présentons un cas d’application de ces travaux, dans le contexte de l’analyse et la

visualisation interactives de données pour l’aide à la prise de décision urgente en cas de situations de crises, dans

le cadre du projet européen VESTEC.

Progressivity in Topological Data Analysis

Topological Data Analysis (TDA) forms a collection of tools that enable the generic and efficient extraction

of features in data. However, although most TDA algorithms have practicable asymptotic complexities, these

methods are rarely interactive on real-life datasets, which limits their usability for interactive data analysis and

visualization. In this thesis, we aimed at developing progressive methods for the TDA of scientific scalar data, that

can be interrupted to swiftly provide a meaningful approximate output and that are able to refine it otherwise.

First, we present a hierarchical representation of the data that enables the definition of efficient coarse-to-fine topo-

logical algorithms. As a result we introduce two progressive algorithms for the computation of the critical points

and the extremum-saddle persistence diagram of a scalar field. These methods provide interpretable outputs upon

interruption, offer a continuous visual feedback along the computation, and are faster in practice than their non-

progressive counterpart. Next, we revisit this progressive framework to introduce an approximation algorithm for

the persistence diagram of a scalar field, with strong guarantees on the related approximation error. Finally, in a

effort to perform visual analysis of ensemble data, we present a novel progressive algorithm for the computation of

the discrete Wasserstein barycenter of a set of persistence diagrams, a notoriously computationally intensive task.

Our progressive approach enables the approximation of the barycenter within interactive times. We extend this

method to a progressive, time-constraint, topological ensemble clustering algorithm. We present an application

use-case of all this work in the context of supercomputing and interactive data analysis and visualization to help

the urgent decision-making process during crisis events, in the scope of the European project VESTEC.

	Acknowledgments – Remerciements
	Publications
	Contents
	Notations
	Introduction
	General Context
	Data Analysis and Visualization
	The Topology ToolKit (TTK)
	The VESTEC Project

	Motivations
	Topological data representation
	Progressive computation

	Problem Formulation
	Data Reduction
	Analysis of Reduced representations
	Degraded/progressive computation

	Contributions
	Outline

	Theoretical Background
	Input data representation
	Domain representation
	Topological invariants
	Scalar field representation

	Critical Points
	Persistence Diagrams
	The case of the 0-th Betti number
	Notions of persistent homology
	Topological persistence

	Metrics on the space of Persistence Diagrams
	Wasserstein distance between diagrams
	Bottleneck distance between diagrams

	Other topological abstractions

	A Progressive Approach to Scalar Field Topology
	Our contribution in one image
	Context
	Related Work
	Contributions

	Progressive Data Representation
	Edge-Nested Triangulation Hierarchy
	Edge-Nested Triangulations of Regular Grids
	Topologically Invariant Vertices

	Progressive Critical Points
	Initialization and Updates
	Computation Shortcuts
	Parallelism
	Extremum Lifetime

	Progressive Persistence Diagrams
	Persistence Diagram from Critical Points
	Progressive Strategy
	Parallelism

	Results
	Progressive Data Representation
	Time Performance
	Stress Cases
	Progressive Topological Visualization and Analysis

	Limitations and Discussion
	Summary

	Approximation of Persistence Diagrams with Guarantees
	Our contribution in one image
	Overview
	Topology Approximation
	Hierarchy Processing
	Vertex Folding
	Bottleneck Error Control
	Monotony offsets
	Parallelism
	Uncertainty

	Results
	Time Performance
	Approximation Accuracy
	Qualitative Analysis

	Limitations and Discussion
	Summary

	Progressive Wasserstein Barycenters of Persistence Diagrams
	Our contribution in one image
	Context
	Related Work
	Contributions

	Background
	Efficient Wasserstein distance computation by Auction
	Wasserstein barycenters of Persistence diagrams

	Overview
	Progressive Barycenters
	Auctions with Price Memorization
	Accuracy-driven progressivity
	Persistence-driven progressivity
	Parallelism
	Computation time constraints

	Application to Ensemble Topological Clustering
	Results
	Time performance
	Barycenter quality
	Ensemble visual analysis with Topological Clustering

	Limitations
	Overall time-constrained pipeline
	Summary

	An application use case
	The VESTEC project
	Purpose
	Numerical simulations for urgent decision-making
	Use cases
	Challenges

	Topological Data Analysis in VESTEC
	Persistence diagrams for Data Reduction
	In-Situ Computation
	Statistical Analysis

	Results: The Space Weather Use Case
	In-Situ Computation of Persistence Diagrams
	Wasserstein distances between diagrams
	Topological Clustering

	Conclusion

	Conclusion
	Summary of contributions
	Discussion
	Perspectives
	Final Word

	Appendix: Data List
	Bibliography

